STUDIES ON IMMOBILIZATION TECHNIQUES FOR DEXTRANASE ENZYME AND ITS APPLICATION IN FOOD INDUSTRY

By

KHALED FAHMY MAHMOUD MORSY

B. Sc. Agric. Sc. (Food Science), Cairo University, 1991 M. Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2006

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Food Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

دراسات على طرق تحميل إنزيم الدكسترانيز وتطبيقاته في التصنيع الغذائي

رسالة مقدمة من

خالد فهمي محمود مرسي

بكالوريوس علوم زراعية (صناعات غذائية)، جامعة القاهرة، 1991 ماجستير علوم زراعية (علوم وتكنولوجيا الأغذية)، جامعة عين شمس، 2006

للحصول على

درجة دكتور فلسفة في العلوم الزراعية (علوم وتكنولوجيا الأغذية)

قسم علوم الأغذية كلية الزراعة جامعة عين شمس

5. SUMMARY

The presence of *Leuconostoc mesenteroides* and *Leuconostoc* species in sugarcane juice in sugar factories causes loss of sucrose and formation of dextran (polysaccharide) which interferes in sugar manufacturing process in addition to the loss of sucrose. The problems caused, the loss of sucrose, increase in viscosity of process syrups, and poor recovery of sucrose due to inhibition of crystallization.

Many microorganisms produced dextranase such as yeast, bacterial, and fungal strains which are capable to remove the dextran. The present study was carried out to evaluate the production, extraction and purification of dextranase from some microbial strains and studying the characteristics of chosen enzyme. The immobilization techniques by different supports, the stability and characterization of the immobilized dextranase and its application in sugarcane along with its economic costs were also studied.

The obtained results are summarized as:

1. Microbial Production of Dextranase:

1. Six microbial strains *Penicillium funiculosum NRRL-6014*; *Penicillium aculeatum* NRRL-896; *Bacillus subtilis* M-15; *Leconostoc dextranicus* B-512 FM; *Saccharomyces cerevisiae* YSF-5 and *Lipomyces starky* ATCC-12659 were used to produce dextranase (α-I,6-glucan 6-glucano-hydrolase, EC 3.2.1.11) on basal medium contained dextran. The dextranase produced from fungal strain (*P. aculeatum*) showed the highest activity after 7 days incubation period (101250.00 units/100ml) compared to the other fungal strain (*P. funiculosum* NRRL-6014) or the five microbial strains i.e. *Bacillus subtilis* M-15; *Leconostoc dextranicus* B-512 FM; *Saccharomyces cerevisiae* YSF-5 and *Lipomyces starky* ATCC-12659 being 2985.03, 27591.49, 1078.18 and 744.61 units/100 ml, after 10, 7, 4 and 10 days, respectively.

Approval Sheet

STUDIES ON IMMOBILIZATION TECHNIQUES FOR DEXTRANASE ENZYME AND ITS APPLICATION IN FOOD INDUSTRY

By KHALED FAHMY MAHMOUD MORSY

B.Sc. Agric. Sc. (Food Science), Cairo University 1991 M. Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2006

This thesis for the Ph.D. degree has been approved by:

Dr. Abd El-Rahman Mohamed khalf-allah	
Prof. Emeritus of Food Science and Technology, Facult	
Agriculture, Cairo University	
Dr. Hamdy Mostafa Ebeid	
Prof. of Food Science and Technology, Faculty of Agriculture	, Ain
Shams University	
Dr. Nessrien Mohamed Nabih Yasin	
Associate Prof. of Food Science and Technology, Facult	y of
Agriculture, Ain Shams University	
Dr. Ahmed Yousef Gibriel	
Prof. Emeritus of Food Science and Technology, Facult	y of
Agriculture, Ain Shams University	

Date of Examination 14/6/2012

STUDIES ON IMMOBILIZATION TECHNIQUES FOR DEXTRANASE ENZYME AND ITS APPLICATION IN FOOD INDUSTRY

By KHALED FAHMY MAHMOUD MORSY

B.Sc. Agric. Sc. (Food Science), Cairo University 1991 M. Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2006

Under the Supervision of:

Dr. Ahmed Yousef Gibriel

Prof. Emeritus of Food Science and Technology, Dep. of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Azza Anwar Amin Hussein

Research Prof. Emeritus of Food Science and Technology, Dep. of Food Science and Technology, National Research Center

Dr. Nessrien Mohamed Nabih Yasin

Associate Prof. of Food Science and Technology, Dep. of Food Science, Faculty of Agriculture, Ain Shams University

CONTENTS

LIST OF T	ABLES	viii
LIST OF F	IGURES	X
LIST OF A	BBREVIATIONS	xiii
1. INTROD	UCTION	1
2. REVIEW	OF LITERATURE	8
2.1.	Microbial production of dextranase	8
2.1.1.	From yeast	8
2.1.2.	From fungi	8
2.1.3.	From bacteria	11
2.2.	Extraction and purification of dextranase	13
2.2.1.	From yeast	13
2.2.2.	From fungi	14
2.2.3.	From bacteria	15
2.3.	Characterization of purified dextranase	16
2.3.1.	From yeast	16
2.3.2.	From fungi	17
2.3.3.	From bacteria	18
2.4.	Immobilization of dextranase	20
2.4.1.	The components of an immobilization enzyme system.	22
2.4.1.1.	Immobilization carrier (support) materials	22
2.4.1.1.1.	Organic carriers	22
2.4.1.1.1.1.	Natural polymer	22
2.4.1.1.1.2.	Synthetic polymers	25
2.4.1.1.2.	Inorganic carriers	27
2.4.1.2.	Activation of carriers used	29
2.4.1.3.	Immobilization methods	33
2.4.2.	Immobilization techniques	34
2.4.2.1.	From yeast	34
2.4.2.1.1.	Adsorption	34
2.4.2.1.2.	Entrapment	35

2.4.2.1.3.	Covalent binding	35
2.4.2.1.4.	Cross-linking	36
2.4.2.2.	From fungi	36
2.4.2.2.1.	Adsorption	36
2.4.2.2.2.	Entrapment	37
2.4.2.2.3.	Covalent binding	38
2.4.2.2.4.	Cross-linking	38
2.4.2.3.	From bacteria	39
2.4.2.3.1.	Adsorption	39
2.4.2.3.2.	Entrapment	40
2.4.2.3.3.	Covalent binding	41
2.4.2.3.4.	Cross-linking	43
2.5.	Characterization of the immobilized enzyme	44
2.5.1.	From yeast	44
2.5.2.	From fungi	45
2.5.3.	From bacteria	48
2.6.	Applications	51
2.6.1.	Application of free dextranase in pharma-ceutical	51
2.6.1.1.	Clinical application	51
2.6.1.2.	Dental plaque applications	51
2.6.2.	Dextranase applications in sugarcane processing	52
2.6.3.	Immobilized dextranase applications in sugar-cane	
	processing	59
3. MATER	IALS AND METHODS	62
3.1.	MATERIALS	62
3.1.1.	Microbial strains and media	62
3.1.2.	Chemicals	62
3.1.3.	Carriers	62
3.1.4.	Application Samples	63
3.2.	METHODS	63
3.2.1.	Production of crude dextranase from different	
	microbial Strains	63

3.2.1.1.	From yeast strains	63
3.2.1.2.	From fungal strains	64
3.2.1.3.	From bacterial strains	66
3.2.2.	Effect of different carbon and nitrogen sources on the	
	production of dextranase	67
3.2.2.1.	Carbon sources.	67
3.2.2.2.	Nitrogen sources	67
3.2.3.	Dextranase activity	68
3.2.4.	Protein determination	69
3.2.5.	Determination of maltose	69
3.2.6.	Extraction and purification of dextranase	70
3.2.7.	Characteristics of the purified dextranase	71
3.2.7.1.	Amino acid analysis of the purified dextranase	71
3.2.7.2.	Electrophoresis and molecular weight of dextranase	72
3.2.7.3.	Optimum pH & temperature of dextranase	72
3.2.7.4.	Thermostability of dextranase	72
3.2.7.5.	pH stability of dextranase	72
3.2.7.6.	Inhibitory effects of saccharides on dextranase	72
3.2.7.7.	Effect of stabilizing agents on dextranase	73
3.2.7.8.	Effect of different concentrations of dextran on	
	dextranase activity	73
3.2.7.9.	Effect of different metals on dextranase activity	73
3.2.7.10.	K_m , V_{max} and activation energy of dextranase	74
3.2.8.	Immobilization techniques of P. aculeatum NRRL-896	
	dextranase	74
3.2.8.1.	Preparation of carriers via ultrasonicator	74
3.2.8.2.	Transmission Electron Microscopy	75
3.2.8.3.	Adsorption technique	75
3.2.8.3.1.	On Bentonite carrier	75
3.2.8.4.	Adsorption with cross-linking technique	76
3.2.8.4.1.	On silica gel carrier	76
3.2.8.5.	Entrapment technique	77

3.2.8.5.1.	On Polyacrylamide gel carrier	77
3.2.8.5.2.	On Alginate beads carrier	77
3.2.8.5.3.	On Hydroxyapatite carrier	78
3.2.8.5.3.1.	Untreated carrier with ultrasonicator	78
3.2.8.5.3.2.	Treated carrier with ultrasonicator	78
3.2.8.6.	Covalent binding technique	78
3.2.8.6.1.	On Chitosan	78
3.2.8.7.	Covalent binding with cross-linking technique	79
3.2.8.7.1.	On Activated charcoal carrier	79
3.2.8.8.	Cross-linking technique	79
3.2.8.8.1.	On Carboxy Methyl Cellulose (CMC) carrier	79
3.2.8.8.1.1.	Untreated carrier with ultrasonicator	79
3.2.8.8.1.2.	Treated carrier with ultrasonicator	80
3.2.8.9.	New immobilization technique for P. aculeatum NRRL-	
	896 dextranase by using oyster mushroom stem (by-	
	product) as a carrier	80
3.2.8.9.1.	Unmodified stem carrier	80
3.2.8.9.2.	Cross-linking technique	81
3.2.8.9.3.	Covalent binding technique by cyanogens bromide	81
3.2.8.9.4.	Covalent binding technique by carbodiimide	81
3.2.9.	Characteristics of immobilized dextranase	82
3.2.9.1.	Immobilized dexreanase activity	82
3.2.9.2.	Optimum pH for immobilized dextranase	82
3.2.9.3.	Optimum temperature for immobilized dextranase	82
3.2.9.4.	Effect of different sugars on immobilized dextranase	82
3.2.9.5.	Effect of different metals on immobilized dextranase	83
3.2.9.6.	Operational and storage stabilities	83
3.2.9.7.	Determination the half-life $(t_{1/2})$ of dextranase	83
3.2.10.	Application of immobilized dextranase in sugarcane	84
3.2.10.1.	°Brix measurement	84
3.2.10.2.	Determination of dextran in sugarcane (juice or syrups)	84
3.2.10.3.	Viscosity	85

3.2.10.4.	Effect of free and immobilized dextranase on the	
	removal of dextran in juice and final evaporator	
	sugarcane syrup	85
3.2.10.5.	Effect of free and immobilized dextranase on the	
	reduction of viscosity in final evaporator sugarcane	
	syrup	86
3.2.10.6.	Effect of biocide on reactivity of dextranase	86
3.2.10.7.	Storage Characteristics of free and immobilized	
	dextranases	86
4. RESULT	S AND DISCUSSION	87
4.1.	Microbial production of dextranase	87
4.1.1.	Effect of different carbon sources on the production of	
	enzyme	89
4.1.2.	Effect of different nitrogen sources on the production	
	of dextranase	90
4.2.	Extraction and purification of dextranase from	
	Penicillium aculeatum NRRL-896	91
4.2.1.	Extraction of crude enzyme	91
4.2.2.	Purification of dextranase	92
4.2.3.	Molecular-weight of purified dextranase by SDS-	
	PAGE	94
4.3.	Characteristics of purified dextranase from Penicillium	
	aculeatum NRRL-896	96
4.3.1.	Amino acid analysis	96
4.3.2.	Optimum temperature of dextranase	97
4.3.3.	Optimum pH of dextranase	98
4.3.4.	Thermostability of dextranase	99
4.3.5.	pH stability of dextranase	100
4.3.6.	Inhibitory effects of saccharides on dextranase activity.	101
4.3.7.	Effect of different concentrations of stabilizing agents	
	on the dextranase activity	103
4.3.8.	Effect of different concentrations of dextran (M.W.	

	40,000 Da) on dextranase activity	105
4.3.9.	Effect of different metals on dextranase activity	106
4.3.10.	K_m , V_{max} and activation energy of dextranase	107
4.4.	Immobilization techniques of P. aculeatum NRRL-896	
	dextranase	108
4.4.1.	Adsorption technique	108
4.4.2.	Entrapment technique	112
4.4.3.	Covalent binding technique	115
4.4.4.	Cross-linking technique	119
4.4.5.	New immobilization technique for P. aculeatum NRRL-	
	896 dextranase by using oyster mushroom stem (by-	
	product) as a carrier	122
4.4.5.1.	Adsorption technique	122
4.4.5.2.	Cross-linking technique	124
4.4.5.3.	Covalent binding techniques by cyanogens bromide	
	and carbodiimide	125
4.4.6.	Comparative studies between immobilization	
	techniques	128
4.5.	Characterization of immobilized dextranase	130
4.5.1.	Optimum pH and stability of immobilized dextranase	130
4.5.2.	Optimum temperature and thermal stability of	
	immobilized dextranase	132
4.5.3.	Effect of different sugars on immobilized dextranase	135
4.5.4.	Effect of different metals on immobilized dextranase	136
4.5.5.	K_m and V_{max} of immobilized dextranase	137
4.5.6.	The activation energy (E_a) for free and immobilized	
	dextranase	139
4.5.7.	The half-life time $(t_{1/2})$ of immobilized dextranase	139
4.5.8.	Properties of oyster mushroom stem immobilized	
	dextranase	140
4.6.	Applications of dextranases in laboratory	141
4.6.1.	Initial laboratory studies for optimized dextranases	

	factory application	141
4.6.2.	Effect of 'Brix on free and immobilized dextranase	
	activity	142
4.6.3.	Effect of free and immobilized dextranase on removal	
	of dextran in final evaporator sugarcane syrup	143
4.6.4.	Effect of free and immobilized dextranase on reduction	
	of viscosity in final evaporator sugarcane syrup	144
4.6.5.	Effect of free and immobilized dextranase on removal	
	of dextran from sugarcane juice at 32 °C	145
4.6.6.	Effect of free and immobilized dextranase on removal	
	of dextran from sugarcane juice at 55 °C	146
4.6.7.	Addition of free or immobilized dextranase to	
	sugarcane juice in the presence of biocide	
	(dithiocarbamate)	148
4.6.8.	Effect of storage of free and immobilized dextranase	
	under simulated factory conditions	149
4.6.8.1.	Storage stability of dextranases at room temperature	150
4.6.8.2.	Storage stability of dextranases under refrigeration (4	
	°C)	151
4.6.9.	The reuse of immobilized dextranase by batch	
	processing	151
4.6.10.	Economic costs of different dextranase applications	153
5. SUMMA	ARY	155
6. REFER	ENCES	164
7. ARABIC	CSUMMARY	

LIST OF TABLES

No	Title	Page
1	Reactive residues of dextranase	31
2	Functionalized supports for dextranase immobilization	32
3	Dextranase activity (unit/100ml) of the culture filtrates of the	
	microbial isolates at different incubation periods	88
4	Effect of different carbon sources on the production of	
	Penicillium aculeatum NRRL-896 dextranase	90
5	Effect of different nitrogen sources on the production of	
	Penicillium aculeatum NRRL-896 dextranase	91
6	Purification scheme for dextranase from Penicillium aculeatum	
	NRRL-896	92
7	Amino acid analysis of purified dextranase from Penicillium	
	aculeatum NRRL-896 per mg/g protein	97
8	Effect of different metals on dextranase activity	106
9	Immobilization of P. aculeatum NRRL-896 dextranase by	
	adsorption techniques	110
10	The overall performance of the free and immobilized dextranase	
	by adsorption techniques	110
11	Immobilization of P. aculeatum NRRL-896 dextranase by	
	entrapment techniques	113
12	The overall performance of the free and immobilized dextranase	
	by entrapment techniques	113
13	Immobilization of P. aculeatum NRRL-896 dextranase by	
	covalent binding techniques	117
14	The overall performance of the free and immobilized dextranase	
	by covalent binding techniques	117
15	Immobilization of P. aculeatum NRRL-896 dextranase on CMC	
	by cross-linking technique	120
16	The overall performance of the free and immobilized dextranase	
	on CMC by cross-linking technique	120

17	Immobilization of P. aculeatum NRRL-896 dextranase by	
	adsorption on oyster mushroom stem	122
18	The overall performance of free and immobilized dextranase by	
	adsorption technique on oyster mushroom stem	123
19	Immobilization of P. aculeatum NRRL-896 dextranase on oyster	
	mushroom stem by cross-linking via amino groups, using	
	glutaraldehyde	124
20	The overall performance of free and immobilized dextranase by	
	cross-linking technique on modified stem mushroom via amino	
	groups using glutaraldehyde	125
21	Immobilization of <i>P. aculeatum NRRL-896</i> dextranase by	
	covalent binding on oyster mushroom stem modified by	
	cyanogen bromide (CNBr) or carbodiimide	127
22	The overall performance of the free and immobilized dextranase	
	by covalent binding on oyster mushroom stem modified by	
22	cyanogen bromide (CNBr) or carbodiimide	127
23	Immobilization of <i>P. aculeatum NRRL-896</i> dextranase on	120
2.4	different carriers	129
24	Effect of different sugars on free and immobilized dextranase	135
25	Effect of different metals on dextranase activity	137
26	Properties of free and immobilized dextranase on stem carrier	140
27	Composition of juice and final evaporator sugarcane syrup from	142
20	an Abu Kerkas factory.	
28	Cost-effective calculations for different dextranase applications	153

LIST OF FIGURES

No	Title	Page
1	Basic chemical structure of dextran $(\alpha-(1\rightarrow 6)-\alpha-D-glucan)$	2
2	The principle of dextranase action on high MW dextran	4
3	Structure of carboxy methyl cellulose	22
4	Structure of chitosan	23
5	Structure of sodium Alginate	24
6	Structure of charcoal	25
7	Structure of polyacrylamide	26
8	Structure of hydroxyapatite	27
9	Structure of bentonite	28
10	Scheme structure of silica gel support	29
11	Extraction of dextranase from both yeast strains	64
12	Extraction of dextranase from both fungal strains	65
13	Extraction of dextranase from both bacterial strains	67
14	Standard curve obtained with various dilution of maltose	
	solution	70
15	Extraction and purification steps of dextranase from	
	Penicillium aculeatum NRRL-896	71
16	A schematic diagram of the ultrasonic device	75
17	Standard curve of haze dextran (MW 40,000 Da)	85
18	Effect of incubation period on dextranase production by	
	different microbial strains	89
19	Chromatogram of crude Penicillium aculeatum NRRL-896	
	dextranase on DEAE-sepharose fast flow	93
20	Elution profiles for protein and dextranase activity on	
	Sephadex G-100	94
21	Electrophoresis analysis of purified dextranase from	
	Penicillium aculeatum NRRL-896	95
22	Molecular-weight estimations by SDS-PAGE	96
23	Effect of temperature on dextranase activity	98