STUDY ON THE REMOVAL OF AMMONIUM IONS FROM DRINKING WATER PLANTS USING MODIFIED NATURAL POLYMER

Submitted By Shalaby Elsayed Bassuony Rezoka

B.Sc. of Science (Chemistry, Oceanography), Faculty of Science, Alexandria
University, 2004

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

STUDY ON THE REMOVAL OF AMMONIUM IONS FROM DRINKING WATER PLANTS USING MODIFIED NATURAL POLYMER

Submitted By

Shalaby Elsayed Bassuony Rezoka

B.Sc. of Science (Chemistry, Oceanography), Faculty of Science, Alexandria University, 2004

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

Ir

Environmental Sciences
Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Sciences

Has been Approved by:

Name Signature

1-Prof. Dr. Ahmed Ismael Hussein Ibrahim

Researcher Prof., Pigments & Polymers Department National Research Center

2-Prof. Dr. Taha Abd El Azeem Mohamed Abd El Razek

Prof. of Analytical Chemistry and Head of Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

3-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic and Analytical Chemistry Faculty of Science Ain Shams University

4-Dr. Gamal Abdel Aziz Meligi

Associate Prof. of Organic Chemistry Faculty of Science Ain Shams University

STUDY ON THE REMOVAL OF AMMONIUM IONS FROM DRINKING WATER PLANTS USING MODIFIED NATURAL POLYMER

Submitted By

Shalaby Elsayed Bassuony Rezoka

B.Sc. of Science (Chemistry, Oceanography), Faculty of Science, Alexandria University, 2004

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

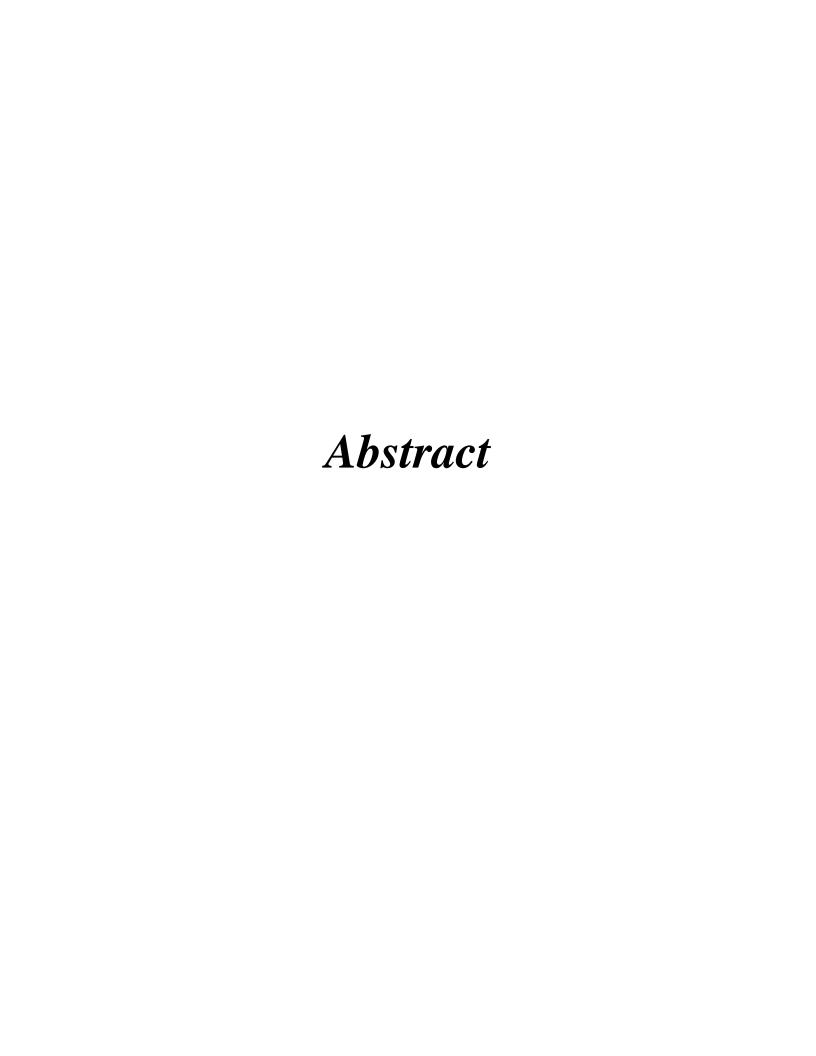
1-Prof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic and Analytical Chemistry Faculty of Science Ain Shams University

2-Dr. Gamal Abdel Aziz Meligi

Associate Prof. of Organic Chemistry Faculty of Science Ain Shams University

3- Dr. Ghada Adel Mahmoud


Associate Prof. of Radiation Chemistry National Center of Radiation Research & Technology Atomic Energy Authority

ACKNOWLEDGEMENT

All praise and gratitude be to Allah almighty. For giving me the courage and patience to accomplish this work. Acknowledgement is due to basic science department of Institute of Environmental Studies and Research Ain Shams University and the reference laboratory for wastewater at holding company for drinking water and wastewater for the facilities and support provided for the completion of this research. I would like to appreciate and thank my thesis advisors prof. Dr. Mostafa M. H. Khalil and Dr. Gamal Meligi and prof Dr. Ghada Adel Mahmoud for incessant guidance work. They throughout this research are always kind. understanding and sympathetic to me their valuable suggestions and useful discussions made this work interesting for me. Thanks are due to my thesis committee members for their interest. Cooperation and constructive advice.

I would like also my acknowledgment and grateful appreciation my Beloved parents, brothers, sisters, my sincerely wife my daughter (Elena and As eel) and All my friends for their prayers, sacrifices, Love, patience, encouragement And Understanding, without which The completion of this study would not have been possible.

SHALABY ELSAYED REZOKA

ABSTRACT

This research discusses the removal of ammonium ions $(NH_4)^+$ from raw water using modified polymers (hydrogel) as an adsorbent. The raw water has been obtained from Fesha water treatment plant which is a traditional treatment plant located in Behera. For this purpose, kappa acid carrageenan/acrylic (KC/AAc) hydrogel and kappa carrageenan/acrylic acid/polyacrylamide (CK/AAc/PAM) hydrogel were prepared via free radical polymerization using gamma irradiation. The effect of irradiation dose, (AAc) concentration and (PAM) concentration on gel content wer studied. The formed hydrogel was characterized by FTIR, SEM and (TGA). The swelling behavior was determined as a function of irradiation dose, (AAc) content and (PAM) content. The developed hydrogel was used for the removal of $(NH_4)^+$ ions. The effects of various operating parameters such as initial pH, contact time, and adsorbent dose on the removal of $(\mathbf{NH_4})^+$ ions have been investigated. It was found that for (CK/AAc) the optimum pH value is 5 and the perfect adsorbent dose is 15 gm/L. A fast adsorption rate was observed the equilibrium was reached within 50 min and the maximum removal percent was (52.7%).and for (CK/AAc/PAM) the optimum pH value is 7 and the perfect adsorbent dose is 5 gm/L. A fast adsorption rate was observed the equilibrium was reached within 30 min and the maximum removal percent was (66.7%).

Keyword: kappa carrageenan, ammonium ion, hydrogel, irradiation, adsorption.

Contents

	page no
Abstract	
Chapter 1: INTRODUCTION AND LITERATURE REVIEW	
1.1 Problem statement	1
1.2. Water sources in Egypt	3
1.3. Water uses in Egypt	3
1.4. Ammonia (ammonium ion)	4
1.4.1. Some Sources of ammonium ion in water	5
1.4.2. Negative impact of presence of ammonium ions in water	5
1.4. 3. Negative effects of ammonium ion	6
1.4. 3. 1. Acute exposure	6
1.4. 3. 2. Short-term exposure	6
1.4. 3. 3. Long-term exposure	6
1.4. 3. 4. Some technique's which used in ammonium ion removal	7
1.5. Water treatment	8
1.5.1. Water treatment processes	8
1.5.2. Disinfection	12
1.5.2.1 Advantages of chlorination	14
1522 Disadvantages of chlorination	15

1.5.2. 3. Chlorination byproducts	15
1.5.2.4. Health effect of (THM's)	15
1.5.2.5. Ozone	16
1.5.2.6. UV Light	16
1.6. Hydrogels	17
1.6.1. Classification of hydrogels	20
1.6.2. Natural Polymers	21
1.6.2.1. Carrageenan	22
1.6.2.1. a. Extraction of carrageenan from seaweeds	28
1.6.3. Superabsorbent Hydrogels	30
1.6.4. Different methods for preparation of hydrogels	31
1.6.5. Radiation Processing of Hydrogels	31
1.6.6. Polyacrylamide	32
1.6.7 Acrylic Acid	34
CHAPTER II : Material and Methods	
2 -1 samples	40
2.2 Chemicals	42
2.3. Equipment	43
2 .4. Experimental	44
2 .4.a. Water sample collection	44

2 .4.b. Jar testing	45
2 .4.c. hydrogel	40
2 .4.d. Preparation of hydrogels	46
2 .4.d. 1. Preparation of KC/AAc hydrogels	46
2 .4.d. 2. Preparation of KC/AA/PAAm hydrogels	46
2 .4.d.3. Gamma radiation treatment	47
2 .4.e. Instrumental analysis	47
2 .4.e.1. Infrared analysis	47
2 .4.e.2. Thermo gravimetric analysis (TGA)	47
2 .4.e.3. Morphological study (SEM)	48
2 .4.f. Gel content measurements	48
2 .4.g. Swelling measurements	48
2 .4.h. Turbidity (APHA, 2011)	49
2 .4.i. Measure total suspended solids (TSS)	49
2 .4.j. Measure biological oxygen demand (BOD)	50
2 .4.k. Measure chemical oxygen demand (COD)	52
2 .4.L. Measure (pH) and total conductivity	53
2 .4.m. Measure ammonia	54
2 .4.n. Trihalomethanes	56
2.5 Ontimization studies of ecogulants	57

2 .5.a. Optimum pH	57
2 .5.b. Optimum dose	57
2 .5.c. Optimum contact time	57
CHAPTER III: RESULTS AND DISCUSSION	
3.1. Synthesis of hydrogels using gamma radiation	58
3.1.1. Synthesis of KC/AAc and KC/AAc/PAM hydrogels	59
3.1.1.1. Effect of gamma radiation on the gel percent	59
3.1.1.2: Effect of AAc content on the gel percent	63
3.1.1.3: Effect of KC content on the gel percent of KC/AAc hydrogel	65
3.2: Swelling behavior	67
3.2.1: Effect of gamma radiation on the swelling percent	67
3.2.2: Effect of AAc content on the swelling percent of (KC/Aac) hydrogel	71
4. Characterization and some selected properties of the prepared hydrogels	
4.1. Fourier transfer infrared spectra (FTIR)	73
4.2. Scanning Electron Microscope (SEM)	76
4. 3. Thermal gravimetric analysis (TGA)	78
4.4 : Application the prepared hydrogels for Removal of ammonium ion	s 78
4.4.1: Effect of pH	7 9
4.4.2: Effect of contact time.	81
A A 3. Effect of advarbant desage	82

4.5: Application on fesha plant	84
4.6: TRIHALOMETHANES (THM'S)	88

References

الملخص العربي

المستخلص

List of Tables

	Page no
Table (1): water sources in Egypt	3
Table (2): water uses in Egypt	4
Table (3): The full processes of water treatment	10
Table (4): waterborne diseases	12
Table (5): The Equipment	43
Table (6): Comparison between KC/AA hydrogel	
and KC/AA/PAAM hydrogel after application on	78
Table (7): The analysis data raw water and the treated water from Fesha plant.	85
Table (8): The analysis data of the treated water by (KC/AAc) and	
(KC/AAc/PAM) hydrogels	87

List of Figures

	Page no
Figure (1.1): concentration of ammonium ion (NH ₄) ⁺ in Nile branch Rosetta in 2014	2
Figure (1.2): Distribution of earth water	3
Figure (1.3): Typical arrangement of water treatment process	10
Figure (1.4): kappa carrageenan	23
Figure (1.5): Iota carrageenan	23
Figure (1.6): Lambda carrageenan	24
Figure (1.7): polyacrylamide	33
Figure (1.8): acrylic acid	35
Figure (2.1): A simple flow diagram of (FWTP)	41
Figure (3.1): Effect of gamma radiation dose on the gel percent of	
(KC/AAc) hydrogel at various AAc concentrations	61
Figure (3.2): Effect of gamma radiation dose on the gel percent of	
KC/AAc/PAM hydrogel at various AAc concentrations Figure (3.3): Effect of (AAc) content on the gel percent of (KC/AAc) hydrogen	62
at irradiation dose 25 kGy and (1% KC) concentration	64
Figure (3.4): Effect of (AAc) content on the gel percent of (KC/AAc/PAM)	V 1
hydrogel at irradiation dose (20 kGy) and (1% KC) concentration	64

Figure (3.5): Effect of gamma radiation dose on the gel percent of (KC/AAc)	
hydrogel at various (KC) concentrations	66
Figure (3.6): Effect of gamma radiation dose on the swelling percent of (KC/AAc)	
hydrogel at various (AAc) concentrations and a swelling time 24 h	69
Figure (3.7): Effect of gamma radiation on the swelling percent of (KC/AAc/PAM)	1
hydrogel at various (AAc) concentrations and a swelling time 24 h	70
Figure (3.8): Effect of monomer content on the swelling percent of (KC/AAc)	
hydrogel at contact time 24 h at radiation dose 25kGy	71
Figure (3.9): Effect of monomer content on the swelling percent of (KC/AAc/PAM)
hydrogel at contact time 24 h at radiation dose 25kGy	72
Figure (3.10): FTIR spectra of KC (A), (KC/AAc) (B),	
KC/AAc/PAM (C) hydrogels	75
Figure (3.11): SEM of carrageenan (A), (KC/AAC) (B) and (KC/AAC/PAM) (C)	
hydrogels	77
Figure (3.12): Effect of pH on the removal percent of ammonium	
ions by (KC/AAc) hydrogel	80
Figure (3.13): Effect of PH on the removal percent of ammonium ions by	
(KC/AAc/PAM) hydrogel	80
Figure (3.14): Effect of contact time on the removal percent of ammonium	
ions by (KC/AAc) hydrogel at pH 5	81
Figure (3.15): Effect of contact time on the removal percent of ammonium	
ions by (KC/AAc/PAM) hydrogel at pH 7	82

Figure (3:16): Effect of (KC/AAc) hydrogel dose on the removal percent of (I	$NH_4)^+$
ions at pH 5 and contact time 50min	83
Figure (3:17) Effect of (KC/AAc/PAM) hydrogel dose on the removal percent	of
(NH ₄) ⁺ ions at pH 7 and contact time 30 mint	84
Figure (3:18): (THM's) of Raw Water of Fesha Plant	89
Figure (3:19): (THM's) of Solvent (Hexane)	90
Figure (3:20): (THM's) of Treated Water of Fesha Plant	91
Figure (3:21): (THM's) of carrageenan and Acrylic Acid	92
Figure (3:22): (THM's) of carrageenan. Acrylic Acid and Poly Acrylamide	93