GAMMA KNIFE RADIOSURGERY FOR FUNCTIONING PITUITARY ADENOMAS

A Thesis submitted in partial fulfillment of the conditions for the awardof aMedical Doctorate (MD) Degree in Neurosurgery

By

ESENE IGNATIUS NGENE

M.B.B Ch., M.Sc Neurosurgery Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. HOSSAM MOHAMED EL- HUSSENI

Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

Prof. Dr. WAEL ABDEL HALIM REDA

Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

Prof. Dr. HAMDY IBRAHIM KHALIL

Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

Prof. TAREK HAMDY ELSERRY

Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 2016

ACKNOWLEDGEMENT

I will like to express my sincere appreciation to the following who supported my training in Neurosurgery and/or assisted me in one way or the other to carry out this thesis:

- **4** ALMIGHTY GOD
- **4** Thesis Supervisors:
 - > Prof. Dr. HOSSAM MOHAMED EL- HUSSENI
 - ➤ Prof. Dr. WAEL ABDEL HALIM REDA
 - > Prof. Dr. HAMDY IBRAHIM KHALIL
 - ➤ Prof. TAREK HAMDY ELSERRY
- ♣ Prof. Dr Emad Ghanem and the Staff of the Department of Neurosurgery, Ain Shams University.
- ♣ Dr Amr Refaat and the Staff of Cairo Gamma Knife Center,
- ♣ H.E Dr Mohamadou Labarang-Ambassador of Cameroon to Egypt and Staff of the Cameroonian Embassy,
- ♣ Prof. Madjid Samii-WFNS Ambassador For Africa and World Federation of Neurosurgical Societies (WFNS) and
- ♣ My Family, Friends and Colleagues.

Contents

A	ABBERVIATIONS	5
L	IST OF TABLES	6
L	IST OF FIGURES	7
1	. INTRODUCTION	9
2	. OBJECTIVES	. 11
3	. REVIEW OF LITERATURE	. 12
	3.1 HISTORICAL PERSPECTIVE	. 12
	3.2 EMBRYOLOGY OF THE PITUITARY	. 13
	3.3 ANATOMY OF THE PITUITARY GLAND AND SELLA	. 14
	3.4 RADIOLOGICAL ANATOMY OF THE PITUITARY AND SELLA	. 22
	3.5 PHYSIOLOGY OF THE PITUITARY GLAND	. 24
	3.6 PATHOLOGY OF PITUITARY ADENOMAS	. 31
	3.7 CLINICAL PRESENTATION	. 39
	3.8 DIAGNOSTIC APPROACH FOR PITUITARY ADENOMAS	. 50
	3.9 TREATMENT OF PITUITARY ADENOMAS	. 64
4	. METHODOLOGY	. 86
	4.1 STUDY DESIGN	. 86
	4.2 TIME FRAME	. 86
	4.3 STUDY SITE (SETTING)	. 86
	4.4 STUDY POPULATION (PARTICIPANTS)	. 86
	Sampling & Recruitment	. 86
	Sample Size Justification	. 87
	Inclusion Criteria	. 87
	Exclusion Criteria	. 88
	4.5 PROCEDURE (PATIENT MANAGEMENT)	88

4.6 FOLLOW UP	99
4.7 STATISTICAL METHODOLOGY	101
4.8 ETHICAL CLEARANCE	102
4.9 CONFLICT OF INTEREST	102
5. RESULTS	103
5.1 BASELINE CHARACTERISTICS OF PATIENTS	103
5.2 TREATMENT OF THE PATIENTS	110
5.3 INDICATIONS FOR GK RADIOSURGERY	113
5.4 OUTCOME AFTER GK RADIOSURGERY	114
5. ILLUSTRATED CASES	130
7. DISCUSSION	138
STUDY JUSTIFICATION	138
GOALS OF STUDY	138
STUDY METHODOLOGY	139
OUTCOME ASSESSMENT AFTER GK RADIOSURGERY	139
3. CONCLUSION	153
9. SUMMARY (ENGLISH)	154
10. SUMMARY (ARABIC) Error! Bookmark	not defined.
11 LIST OF REFERENCES	156

ABBERVIATIONS

Abbreviation	Full Meaning
3D	Three Dimensional
ACTH	Adrenocorticotropin Hormone
ACTH-oma	Adrenocorticotropin Hormone Secreting Adenoma
CRH	Corticotropin Releasing Hormone
CS	Cavernous Sinus
CSF	Cerebro Spinal Fluid
CT	Computerized Tomography
D2	Dopamine 2
DA	Dopamine Agonist
ENT	Ear Nose And Throat
FSH	Follicle Stimulating Hormone
FPA	Functioning Pituitary Adenoma
GH-oma	Groth Hormone Secreting Adenoma
GH	Growth Hormone
GnRH	Gonadotropin Releasing Hormone
GHRH	Growth Hormone Releasing Hormone
HE	Hematoxylin–Eosin
ICA	Internal Carotid Artery
IGF-1	Insulin Growth Factor 1
IPSS	Inferior Petrosal Sinus Sampling
IRMA	Immunoradiometric Assay
LH	Luteinizing Hormone
MEN	Multiple Endocrine Neoplasia
MRI	Magnetic Resonance Imaging
NFA	Clinically Nonfunctioning Adenoma
OGTT	Oral Glucose Tolerance Test
PRL	Prolactin
PRL-oma	Prolactin Secreting Adenoma
T4	Free Thyroxin
TRH	Thyrotropin Releasing Hormone
TSH	Thyroid Stimulating Hormone
UFC	Urine Free Cortisol
VEP	Visual Evoked Potentials
WHO	World Health Organization

LIST OF TABLES

Table 1: Neuroanatomical classification of pituitary adenomas	34
Table 2: Classification of Pituitary Tumors (WHO)	36
Table 3:Differential diagnosis of sellar masses.	49
Table 4: Baseline Demographic Characteristics of the patients	103
Table 5: Baseline Clinical Characteristics of the patients	
Table 6: Baseline Clinical Features of prolactinomas	105
Table 7: Baseline Visual Manifestations of the patients	106
Table 8: Type of Visual Affection	107
Table 9: History of previous surgery	107
Table 10: Time Interval between last surgery and Gamma Knife Treatment	108
Table 11: Tumor operative status before Gamma Knife Treatment	108
Table 12: Tumor Location and Associated findings	109
Table 13: Treatment parameters	111
Table 14: Tumor Status of the patient before Gamma Knife Radiosurgery	113
Table 15: Medication status for prolactiomas before GKS	114
Table 16: Tumor Volume and Biochemical control	115
Table 17: Hormone Normalization Rates with Time	116
Table 18:Pre- and Post-Radiosurgery Hormonal Levels	118
Table 19: Factors affecting hormonal normalization	119
Table 20: Factors affecting tumor shrinkage	123
Table 21: Association between prescription dose and tumor shrinkage stratified	l by tumor
type	124
Table 22: Visual outcome after GK Radiosurgery (Per Eye)	126
Table 23: Factors affecting visual outcome (Normalization)	127

LIST OF FIGURES

Figure 1: Embryogenesis of the pituitary gland	. 13
Figure 2: The pituitary gland and its relationships	. 14
Figure 3: Superior view of pituitary gland	. 16
Figure 4: Optic Chiasm	. 17
Figure 5: Cavernous Sinus	. 18
Figure 6: Sagittal sections of the sellar region	. 19
Figure 7: Types of sphenoid sinus	. 20
Figure 8: Sphenoid Sinus	. 21
Figure 9: Pituitary cell types distribution within the adenohypophysis	. 24
Figure 10: Pituitary Neuroendocrinology	. 25
Figure 11:Hypothalamo-Hypophysial Portal Circulation	. 28
Figure 12: Hypothalamo-Hypophysial Tract	. 29
Figure 13: Pathological diagnosis in pituitary adenomas	. 32
Figure 14: Normal MRI Sella	. 58
Figure 15:Dynamic and standard coronal image of a microadenoma	. 59
Figure 16: MRI evaluation of a pituitary macroadenoma	. 60
Figure 17: Hardy's classification of pituitary adenoma	. 61
Figure 18: The KNOSP Classification	. 62
Figure 19: Management Choices for Pituitary Adenomas	. 74
Figure 20: The 3-D Cartesian Axes of a Stereotactic System	. 77
Figure 21: Effects of Ionizing radiation over time	. 81
Figure 22: The Leksell Gamma Knife PERFEXION	. 83
Figure 23: Leksell GK PERFEXION radiation unit and collimator system	. 83
Figure 24: Sample size justification	. 87
Figure 25: Gamma Knife coordinate frame. (Image Courtesy of Elekta, Inc.)	. 90
Figure 26: Leksell frame G tray (frame, posts, screws, and screw drivers)	. 91
Figure 27: MRI box in place	. 91
Figure 28: Placement of plastic cap	. 92
Figure 29: Fixation of the plastic 'bubble' to the frame and taking of measurements	. 94
Figure 30: Patient in the MRI Unit	. 95
Figure 31: Typical planning with Gamma Knife Perfexion	. 97
Figure 32: Positioning of patient for Treatment	. 98

Figure 33: Age Distribution by Pituitary Adenoma Sub-Type	103
Figure 34: Kaplan Meier Curve for Hormone Normalization	117
Figure 35: Kaplan Meier survival for tumor shrinkage	122
Figure 36: Case N° 1 : MRI Sella (Axial Cuts). A (Pre-) & B (Post)- Radiosurgery.	130
Figure 37: Case N° 1: Visual Field (Pre- & Post- Radiosurgery)	131
Figure 38: Case N° 2: MRI Brain (Coronal (A) & Axial Cuts(B)): Pre-GK Radiosu	rgery 132
Figure 39: Case N° 2: MRI Brain (Coronal Cuts): Post-GK Radiosurgery	132
Figure 40: Case N° 2: Visual Field (Pre- & Post- Radiosurgery)	133
Figure 41: Case N° 3: MRI sella (Coronal Cuts): A (Pre)- B (Post) Surgery	& C (Post-
Dostinex)	134
Figure 42: Case N° 3: MRI sella (Coronal Cuts): A (Post MicroSurgery) &	B (Post-
Radiosurgery)	134
Figure 43: Case N° 3: Visual Field (Pre- & Post- Radiosurgery)	135
Figure 44: Case N° 4: Pre- (A) & Post-(B) Radiosurgery MRI	136
Figure 45: Case N° 4: Visual Field (Pre- & Post- Radiosurgery)	137

1. INTRODUCTION

RATIONALE AND JUSTIFICATION OF STUDY

Pituitary adenomas are amongst the most common intracranial lesions, constituting 10-20% of primary brain tumors. They have a reported annual incidence in the general population close to 20%¹. Pituitary adenomas are generally classified as either "functioning" or "non-functioning," with the former (secreting adenomas) representing about 70% of all pituitary tumors^{2, 3}. Classically, pituitary adenomas present with a **clinical** triad related to hypersecretion/hypopituitarism, mass effect or as incidentalomas; occasionally as pituitary apoplexy, or rarely as cerebrospinal fluid rhinorrhoea⁴.

A suspected case of pituitary adenoma will require a coordinated two step **diagnostic approach** to establish the endocrine and the anatomical diagnosis via an initial clinical assessment, complemented by a spectrum of endocrinologic and neuroimaging tests. Additionally a neuroophthalmologic assessment is routinely required⁴.

The management of pituitary adenomas requires a multidisciplinary approach. The current therapeutic armamentarium includes medical, surgical and radiotherapeutic methods with the latter being rapidly replaced by radiosurgery. Pituitary tumors are well-suited for radiosurgery, since radiation can be focused on a well circumscribed region, while adjacent neural structures in the suprasellar and parasellar regions are spared ^{2, 3, 5-9}.

Stereotactic radiosurgery uses sophisticated 3-D computerized imaging to precisely target an ionizing ray and deliver a high concentrated dose of radiation to the lesion. Stereotactic radiosurgery differs and is advantageous over conventional surgery because there is no incision involved and general anesthesia is not required for adults, and short treatment duration amongst others^{5, 6}.

The expected dominance of the time-honored microscopic pituitary surgery technique as the "gold standard" for pituitary surgery seems to be fading out while the endoscopic techniques are on a rise. Microsurgical resection alone provides a long-term tumor control rate of only 50% to 80% and a long-term remission rate of endocrinologic normalization after surgical resection that often falls short of expectations. Reoperation for residual or recurrent tumors is associated with the more difficult complete resection and the endoscopic method alone is insufficient to solve all problems associated with these cases⁷. There is thusneed for a complementary technique.

Most studies involving SRS for nonfunctioning pituitary adenomas (NFAs) have shown excellent tumor volume control, with a mean tumor control rate of 93% (range: 68%-100%). However in FPAs, this type of treatment remains challenging. Literature on SRS for FPAs is variable with reported rates of 35-83% for Cushing's disease, 42-60% for acromegaly, and 26-43% for prolactinomas⁵.

The main goals of SRS for FPAs are to normalize excessive hormonal production and control tumor growth ⁷. The rationale of our study is to define accurately the effectiveness, safety, complications, and role of theGamma Knife Radiosurgery for the treatment of secretory pituitary adenomas in our population.

2. OBJECTIVES

GENERAL OBJECTIVE

To assess the effectiveness, safety, complications, and role of the gamma knife for the treatment of functioning pituitary adenomas (FPAs).

SPECIFIC OBJECTIVES

- → To evaluate the effectiveness of Gamma Knife Radiosurgery in terms of biochemical remission and tumor control and explore factors affecting them.
- ♣ To assess the morbidity association with Gamma Knife Radiosurgery for functioning pituitary adenomas

3. REVIEW OF LITERATURE

3.1 HISTORICAL PERSPECTIVE

The anatomy of the pituitary gland has been known since the Greek and Roman antiquity through the works of Hippocrates and Galen. The latter propagated that the pituitary was the route for the «disposal of waste products of the brain», a concept taught to medical students for millennia. The work of Vespasian during the Renaissance raised questions about the concepts introduced by Galen but the relationship between « disease » and « pituitary tumors » only actually began with the introduction of anatomical and clinical methods in the 17th century¹⁰.

Andreas Vesalius (1543) believed the pituitary produced mucus, secreted by the brain into the nasal cavity hence the name "glandula pituitaria" (pituita=mucus). Jean Louis Petit (1674-1750) showed that the development of a pituitary tumor can cause blindness.

Pierre Marie (1853-1940), in 1886, demonstrated the relationship between symptoms of acromegaly and pituitary tumor.

The link between Hypopituitarism and malfunction of the pituitary gland was established in 1901 by A Froelich (1871-1953) and H Cushing in his book "The Pituitary Body and Its Disorders" describing the different clinical pictures of hypo or hyper secretion¹⁰.

The pituitary gland (master gland) controls the activities of the other endocrine glands. Knowledge of its anatomy and physiology is important for proper management of pituitary tumors.

3.2 EMBRYOLOGY OF THE PITUITARY

The sella develops as a depression in the body of the sphenoid, is lined with dura and houses the pituitary gland. The pituitary gland develops from two different structures¹¹:

An Upward Ectodermal Growth [Oral ectoderm of the primitive buccal cavity (stomatodeum)] from the roof of the pharynx that passes cranially as the Rathke's pouch forming the anterior portion of the pituitary (adenohypophysis).

A Downward Neural Growth (projection of the hypothalamus) from the floor of the third ventricle (base of the diencephalon) forming the posterior lobe (neurohypophysis) and pituitary stalk.

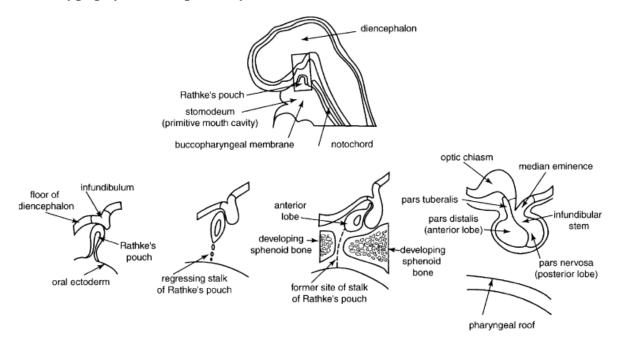


Figure 1: Embryogenesis of the pituitary gland

These two meet in the sella turcica and the stalk of the Rathke's pouch degenerates (loses connection with the pharynx) while the stalk of the neural growth persists and forms the pituitary stalk (infundibulum).

The Rathke's pouchdevelops into three parts: Pars Distalis (pars glandularis), Pars Tuberalis and Pars Intermdia.

The downward neural growth develops into the pars nervosa forming the posterior lobe to which the intermediate lobe becomes closely adherent and is separated from the anterior lobe by a remnant of Rathke's pouch called the Rathke's Cleft.

This composite gland is distinct and separate from the primitive stomatodeum by the seventh week of gestation and further develops under the influence of the hypothalamus through a series of permissive and specific trans-acting proteins¹¹.

3.3 ANATOMY OF THE PITUITARY GLAND AND SELLA

The pituitary gland is a small reddish grey gland **0.5-1 g** in weight. It is situated in the sella turcica (hypophysial fossa) and is attached to the floor of the third ventricle of the brain by a stalk (infundibulum)¹². On a coronal section through the brain the pituitary gland reference structure (Figure 2).

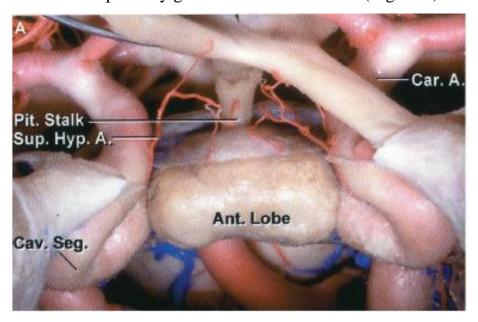


Figure 2: The pituitary gland and its relationships (Courtesy of Roton ¹²)

The pituitary measures 7 mm x 9mm x 11mm in the height, antero-posterior

and transverse diameter respectively.

It has three lobes: A large glandular anterior lobe (the adenohypophysis or

anterior pituitary gland), a small intermediate lobe (rudimentary in humans) and

a large neuronal posterior lobe (the neurohypophysis or posterior pituitary

gland)¹².

The **Adenohypophysis** has three regions ¹²:

The pars tuberalis which is applied to the median eminence and upper

infundibular stem (rostral region of the neurohypophysis) and is an extension of

the glandular hypophysis that lies above the sella turcica.

The pars intermedia is applied to the lower portion of the lower infundibular

stem and the infundibular process (caudal regions of the neurohypophysis)

The pars distalis, the main bulk of the adenohypophysis is composed of

epithelial cells arranged in a glandular pattern, folliculostellate cells arranged in

a syncytium and fenestrated capillaries and has no axonal terminals.

The Neurohypohysis based on regional morphologic specialization is

subdivided into three regions ¹²:

The Median Eminence which together with the two lateral eminences make up

the tuber cinereum visible on the inferior surface of the brain, caudal to the optic

chiasm and rostral to the paired mammilary bodies

The *Infundibular Stem* is the neural portion of the pituitary stalk.

The *Neural Lobe* is the pars nervosa.

Dural, Neural & Vascular Relations Of The Pituitary^{12, 13}

The pituitary by virtue of its position is related to many vital structures.

Inferiorly: It sits in the sella turcica separated from the bone by dura.

Superiorly: Optic chiasm and nerves

Laterally: The cavernous sinus with its content.

Posteriorly: basilar artery and brain stem

15