

IMPROVMENT OF DRAINS WATER QUALITY DOWNSTREAM DISPOSAL POINTS USING AGRICULTURAL WASTES

A Thesis Submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of Ph. Degree in Civil Engineering

Prepared by ENG MARWA ABDEL FATTAH ABD ALLA

Civil Engineer Bachelor, Benha Higher Institute of Technology M.Sc. of Environmental Engineering, October 2010 Institute of Environmental Studies and Researches, Ain Shams University

Supervisors Prof. Dr. Iman Mahmoud Elazizy

Prof. of Hydraulics and Water Resources, Irrigation & Hydraulics Department, Faculty of Engineering, Ain Shams Univ.

Prof. Dr. Mohamed El Hosseiny El Nadi

Prof. of Sanitary & Environmental Eng. & Head of Public Works Department, Faculty of Engineering, Ain Shams Univ.

Dr. Ghada Mahmoud Samy

Assistant Prof. Irrigation and Hydraulics Department, Faculty of Engineering , Ain Shams Univ.

IMPROVMENT OF DRAINS WATER QUALITY DOWNSTREAM DISPOSAL POINTS USING AGRICULTURAL WASTES

A Thesis For

The Ph. Degree in Civil Engineering (Irrigation and Hydraulics)

by

ENG. MARWA ABDEL FATTAH ABD ALLA

BSc. in Civil Eng., Benha Higher Institute of Technology,2001 M.Sc. in Environmental Eng., Institute of Environmental Studies and Researches, Ain Shams University, October 2010

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Mohamed Elsayed Ali Bassiuny	
Professor of Sanitary Engineering & Dean of Benha faculty of Engineering, Benha Univ.	
Prof. Dr. Mohamed M. Nour Eldin Owis	
Professor of Hydraulics and Water Resources,	
Irrigation & Hydraulics Department, Faculty of Eng., ASU. Prof. Dr. Iman Mahmoud Elazizy	
Prof. of Hydraulics and Water Resources,	
Irrigation & Hydraulics Department, Faculty of Eng., ASU.	
Prof. Dr. Mohamed El Hosseiny El Nad	li
Prof. of Sanitary & Environmental Engineering. Head of Public Work Department, Faculty of Eng., ASU.	
nead of Lable Work Department, Lucatey of Eng., 100.	Date:/2015

DEDICATION

It took from me a portion of my life to finish this work, and I return the credit of finishing this work to God.

I wish to dedicate this work to who suffered to educate, prepare, build capacity and help myself to be as I am,

TO

MYMOTHER

AND

MYFATHER

AND I LIKE TO DEDICATE THE WORK TO MY LOVELY CHILDREN

BASEL & MOHAMED

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of PhD in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams University, from October 2012 to May 2014.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - --- /2015

Signature: - -----

Name: - MARWA ABDEL FATTAH ABD ALLA

ACKNOWLEDGMENT

The candidate is deeply grateful to **Prof. Dr. Mohamed El Hosseiny El Nadi**, Professor of Environmental and Sanitary Engineering, Faculty of Engineering, Ain Shams University, for help, encourage, cooperation sponsoring and patient advising during preparation of this research.

And deep thanks to **Prof. Dr. Iman Mahmoud El Azizy,** Professor of Hydraulics and Water Resources, Irrigation & Hydraulics Department, Faculty of Engineering, Ain Shams University.

And deep thanks to **Dr. Ghada Mahmoud Samy,** Assistant Prof. Irrigation and Hydraulics Department- Irrigation and Hydraulics - Ain Shams University.

And deep thanks to **Prof. Dr. Mohamed Elsayed Ali Bassiuny,** Dean of faculty of Engineering, Benha University and professor of Sanitary Engineering for his permission to do the experimental work in the sanitary laboratory in Benha Faculty of Engineering and facilitate all odds to complete the experimental work of the research.

And deep grating to the staff and workers in Faculty of Engineering, Benha University specially whom work in the sanitary laboratory for their support, encourage and co-operation during the preparation of this research.

ABSTRACT

NAME: MARWA ABDEL FATTAH ABD ALLA

Title :- "IMPROVMENT OF DRAINS WATER OUALITY

DOWNSTREAM DISPOSAL POINTS USING

AGRICULTURAL WASTES"

Faculty : Faculty of Engineering, Ain Shams University **Specialty** : Civil Eng., Irrigation and Hydraulic Department

Summary:

This study aims to use agricultural wastes of ficus trees pruning, rice husk and Poinciana trees pruning as a biomedia to improve self purification process in polluted stream bodies. Also it aims to produce a mathematical model for this treatment take into consideration media self purification effect.

An experimental pilot channel was conducted for studying the effect of using biomedia with length equal to 25 and 50cm through the stream flow. A wastewater tank was used as a source of wastewater. Measurements of water samples were done for different parameters for three weeks.

Experimental measurements illustrate the removal ratio was higher by using 50cm ficus tree pruning more than using 25cm of the same media. It achieved 77% for COD and 76% for BOD and decreased the required length for self purification approximately by 154m for COD and 135m for BOD. The measurements also illustrate that using 50cm of rice husk achieved high removal ratio more than using 25cm of the same media. It achieved 60% for COD and 67% for BOD and decreased the required length for self purification by approximately 91m for COD and 90m for BOD. Poinciana trees pruning achieved higher removal efficiency for 50cm more than 25cm. it was 63% for COD and 65% for BOD and decrease the required length for self purification by 17m for COD and by 20m for BOD.

An imperical model equation was produced and verified then applying on results to calculate removal ratio and it had error percents between -8.76 % and + 9.23% for COD and -8.02% and +9.93% for BOD.

Neural networks confirm the produced model equation for prediction of COD and BOD removal ratios when using this method in water stream bodies by error range between -1.44% & +2.00%.

Supervisors:

Prof. Dr. Iman Mahmoud Elazizy, Prof. Dr. Mohamed El Hosseiny El Nadi, Dr. Ghada Mahmoud Samy

Keywords

Water quality, self purification, agriculture waste, pollution control, streams.

ABBREVIATIONS

ANN Artificial neural network
ASB Aerated stabilization basin
BAF Biological aerated filter
BOD Biochemical oxygen demand

BOD₅ Biochemical oxygen demand at the fifth day of the

experiment

COD Chemical oxygen demand DBAF Dual biological aerated filter

DO Dissolved oxygen
EB Eucalyptus bark
FBR Fluidized bed reactor
GAC Granular activated carbon
MBR Membrane biological reactor
MLP Multilayer layer perceptron

MSE Mean Square Error PRH Phosphate rice husk PVC Polyvinyl chloride

RBC Rotating biological contactor

RBF Radial basis function S.P. Self purification SS Suspended solids

SSFW Subsurface flow wetland

TB tubular

TDS Total dissolved solids

TF/SC Trickling filter / solids contact

TSS Total suspended solids UFBR Up flow fixed bed reactor

VF Vertical flow

VFW Vertical flow wetland VSS Volatile suspended solids

XF Cross flow

TABLE OF CONTENTS

		Page
COVE	ER	i
THES	IS APPROVAL	ii
DEDI	CATION	iii
STAT	EMENT	iv
ACKN	NOWLEDGEMENT	V
ABST	TRACT	vi
ABBF	REVIATIONS	vii
TABL	LE OF CONTENTS	viii
LIST	OF FIGURES	X
LIST	OF TABLES	xii
CHA l	PTER I: INTRODUCTION	
1.1 B	ACKGROUND	1
1.2 ST	TUDY OBJECTIVES	1
1.3 SC	COPE OF WORK	1
1.3.1	Theoretical Work	1
1.3.2	Practical Work	3
1.4 T	HESIS ORGANIZATION	3
1.4.1	CHAPTER I: introduction	3
1.4.2	CHAPTER II: Literature Review	3
1.4.3	CHAPTER III: Material and Methods	4
1.4.4	CHAPTER IV: Results of Experimental Work	4
	CHAPTER V: Study Modeling	4
	CHAPTER VI: Discussion	4
1.4.7	Chapter VII: Conclusions	4
CHAI	PTER II: LITERATURE REVIEW	
	TRODUCTION	5
2.2 0	UALITY OF WATER IN STREAM BODIES	5
_	Self Purification of Water Stream Bodies	6
	PPLICATIONS OF AGRICULTURAL WASTE IN	9
	VASTEWATER TREATMENT	
	Applications for Industrial wastewater	9
	Applications for Domestic Wastewater	12
	Applications for Sludge Treatment	13
	ACTORS AFFECTING AGRICULTURAL WASTE USE	14
	IN TREATMENT	
2.4.1		14
	Time of Contact	15
	Media Characteristics	15

2.5 ATTACHED GROWTH BIOLOGICAL TREATMENT	16
2.5.1 MEDIA of Biological Filters	17
2.5.2 Types of Biological Filter	24
2.5.3 Biological Filters Systems	44
2.6 MODEL WORK	50
2.6.1 Background	50
2.6.2 Water Quality Modeling	51
2.7 NEURAL NETWORKS	64
CHAPTER III: MATERIALS AND METHODS	
3.1 STUDY LOCATION	69
3.2 EXPERIMENT DESCRIPTION	69
3.2.1 Pilot Description	69
3.2.2 Used Materials	72
3.3 OPERATION PROGRAM	74
3.3.1 First Stage	74
3.3.2 Second Stage	75
3.4 SAMPLING	75
3.5 MEASUREMENTS	77
3.5.1 pH Value	78
3.5.2 Temperature	78
3.5.3 Dissolved Oxygen (DO)	78
3.5.4 Total Dissolved Solids (TDS)	78
3.5.5 Chemical Oxygen Demand (COD)	79
3.5.6 Biochemical Oxygen Demand (BOD)	80
3.5.7 Turbidity	81
3.6 PHYSICAL MODELING	81
CHAPTER IV: RESULTS ANALYSIS AND DISCUSSIONS 4.1 INTRODUCTION	83
4.2 PHASE I RESULTS AND DISCUSSIONS	83
4.2.1. Phase I Run I Results and Discussions	83
4.2.2. Phase I Run II Results and Discussions	105
4.2.3. Discussion of media thickness effect in phase I	125
4.3. PHASE II RESULTS AND DISCUSSIONS	144
4.3.1. Phase II Run I Results and Discussions	111
4.3.2. Phase II Run II Results and Discussions	
4.3.3. Discussion of media thickness effect in phase II	
4.4. PHASE III RESULTS AND DISCUSSIONS	
4.4.1. Phase III Run I Results and Discussions	
4.4.2. Phase III Run II Results and Discussions	
4.4.3. Discussion of media thickness effect in phase III	

4.5. DISCUSSIONS OF MEDIA TYPE EFFECT

CHAPTER V: SIMULATION MODEL PRODUCTION	
5.1 INTRODUCTION	146
5.2 MODEL ANALYSIS	146
5.2.1 Dilution Model	146
5.2.2 Biomedia Model	147
5.2.3 Self Purification Model	157
5.2.4 Final Complete Model	164
5.3 MODEL VERIFICATION	165
5.3.1 MODEL VERIFICATION USING POINCIANA TREES	165
PRUNING RESULTS	
5.3.2 MODEL VERIFICATION USING NEURAL NETWORKS	167
METHOD	
CHAPTER VI: DISCUSSION	
6.1 OVER VIEW	173
6.2 CONCLUSIONS	173
6.3 RECOMMENDATIONS	175
6.4 FURTHER WORK	176
REFERENCES	177
APPENDIX A: SCREEN SHOOT FOR NEURAL NETWORKS	

LIST OF FIGURES

		Page
CHAPTER I		
Figure 2.1.	Conventional Filter Media	19
Figure 2.2.	Varies Types of Plastic Media	21
Figure 2.3.	New Type of Plastic Media	22
Figure 2.4.	Red Wood Packing Media	24
Figure 2.5.	Typical Trickling Filter Unit	26
Figure 2.6.	Theory of Action in Trickling Filter	27
Figure 2.7.	Cutaway View of a Rectangular Biological Tower	30
Figure 2.8.	Diagrams of Possible Applications for Bio -Towers	31
Figure 2.9.	Up Flow Biological Filter	33
Figure 2/10.	A simplified process flow diagram of the FBR	
	system	35
Figure 2.11.	Biological Aerated Filter (BAF)	36
Figure 2.12.	DBAF System	41
Figure 2.13.	Section in RBC Unit	43
Figure 2.14.	Different Diagrams of Single Stage System	45
Figure 2.15.	Different Shapes of Two Stage System	46
Figure 2.16.	Shapes of Combined System	48
Figure 2.17.	Roughing filter System	49
Figure 2.18.	Water quality management process	51
Figure 2.19.	The transport of a dye patch in space and time	52
Figure 2.20.	Contrast between diffusion and dispersion	54
Figure 2.21.	Neural Network training	65
Figure 2.22.	Single node in a MLP network	66
Figure 2.23.	A multilayer perceptron network with one hidden	
O	layer	67
CHAPTER I	II	
Figure 3.1.	Pilot channel photo	70
Figure 3.2.	Schematic diagram for pilot	71
Figure 3.3.	Frame photo	72
Figure 3.4.	Ficus trees pruning	73
Figure 3.5.	Rice husk	73
Figure 3.6.	Poinciana trees pruning	74
Figure 3.7.	Multi-parameter instrument for Measurement of	
9	pH, temperature, DO and TDS	78
Figure 3.8.	COD Apparatus	79
Figure 3.9.	Incubator CB-3DN	80
Figure 3.10	Turbidimeter	81

CHAPTER IV Figure 4.1. pH range through different samples locations 86 Figure 4.2. Temperature range through different samples locations 86 Figure 4.3. DO range through different samples locations 87 Figure 4.4. COD range through different samples locations 88 Figure 4.5. BOD range through different samples locations 90 TDS range through different samples locations 92 Figure 4.6. Figure 4.7. Turbidity range through different samples locations 93 Figure 4.8. pH range through different samples locations 96 Figure 4.9. Temperature range through different samples 97 locations 97 DO range through different samples locations **Figure 4.10.** COD range through different samples locations 98 **Figure 4.11. Figure 4.12.** BOD range through different samples locations 100 TDS range through different samples locations **Figure 4.13.** 102 **Figure 4.14.** Turbidity range through different samples locations 103 Removal ratios in different thicknesses of Ficus **Figure 4.15** 104 trees pruning media Figure 4.16. pH range through different samples locations 107 **Figure 4.17.** Temperature range through different samples locations 107 **Figure 4.18.** DO range through different samples locations 108 DO range through different samples locations 109 **Figure 4.19. Figure 4.20.** BOD range through different samples locations 111 **Figure 4.21.** TDS range through different samples locations 113 Turbidity range through different samples locations **Figure 4.22.** 114 pH range through different samples locations **Figure 4.23.** 117 **Figure 4.24.** Temperature range through different samples locations 117 **Figure 4.25.** DO range through different samples locations 118 COD range through different samples locations **Figure 4.26.** 119 **Figure 4.27.** BOD range through different samples locations 120 **Figure 4.28.** TDS range through different samples locations 122 Turbidity range through different samples locations **Figure 4.29.** 123 **Figure 4.30.** Removal ratios in different thicknesses of rice husk 124 **Figure 4.31.** pH range through different samples locations 127 Temperature range through different samples **Figure 4.32.** 127 locations DO range through different samples locations 128 **Figure 4.33. Figure 4.34.** COD range through different samples locations 129 **Figure 4.35.** BOD range through different samples locations 131 TDS range through different samples locations **Figure 4.36.** 133

Figure 4.37.	Turbidity range through different samples locations	134
Figure 4.38.	pH range through different samples locations	136
Figure 4.39.	Temperature range through different samples	
	locations	136
Figure 4.40.	DO range through different samples locations	137
Figure 4.41.	COD range through different samples locations	138
Figure 4.42.	BOD range through different samples locations	140
Figure 4.43.	TDS range through different samples locations	142
Figure 4.44.	Turbidity range through different samples locations	142
Figure 4.45.	Removal ratios in different thicknesses of	
O	Poinciana trees pruning	143
Figure 4.46.	Comparison between the applied three media with	
8	thickness 50cm in removal ratios	144
CHAPTER V	7	
Figure 5.1.	Removal efficiency of COD due to comparison	
G	equation	148
Figure 5.2.	Removal efficiency of COD due to concentrations	
G	for regression analysis - first trial	149
Figure 5.3.	Removal efficiency of COD due to concentrations	
G	for regression analysis - second trial	150
Figure 5.4.	Removal efficiency of COD due to concentrations	
O	for regression analysis - third trial	152
Figure 5.5.	Removal efficiency of COD due to concentrations	
G	for regression analysis - fourth trial	153
Figure 5.6.	Removal efficiency of BOD due to concentrations	
G	for regression analysis - first trial	155
Figure 5.7.	COD concentration through the pilot length for S.P.	
_	first trial	157
Figure 5.8.	COD concentration through the pilot length for S.P.	
_	fourth trial	161
Figure 5.9.	Regression of Neural Network for COD	168
Figure 5.10.	Plot fit of Neural Network for COD	168
Figure 5.11.	Best validation performance due to mean square	
_	error for COD	169
Figure 5.12.	Regression of Neural Network for BOD	170
Figure 5.13.	Plot fit of Neural Network for BOD	171
Figure 5.14.	Best validation performance due to mean square	
C	error for BOD	172

LIST OF TABLES

		Page
CHAPTER 1		10
Table 2.1. Table 2.2.	Physical Properties of Filter Media Performance Summary for East BAF Column at Salt	18
1 avic 2.2.	Lake City, Utah.	37
CHAPTER	<u>III</u>	
Table 3.1.	Plan of the experimental work	76
Table 3.2.	Process of measurements	77
CHAPTER 1	<u>IV</u>	
Table 4.1.	Tap water and raw wastewater analysis results for	
	phase I-run I	84
Table 4.2.	Water quality parameters analysis from different	
	locations for phase I - run I	85
Table 4.3.	Calculated removal efficiencies for COD	
	concentrations (I-I)	89
Table 4.4.	Calculated removal efficiencies for BOD	
	concentrations (I-I)	91
Table 4.5.	Tap water and raw wastewater analysis for phase I-	
	run II	94
Table 4.6.	Water quality parameters analysis from different	
	locations for phase I-run II	95
Table 4.7.	Calculated removal efficiencies for COD	
	concentrations (I-II)	99
Table 4.8.	Calculated removal efficiencies for BOD	
	concentrations (I-II)	101
Table 4.9	Tap water and raw wastewater analysis for phase II-	
	run I	105
Table 4.10	Water quality parameters analysis from different	
	locations for phase II- run I	106
Table 4.11	Calculated removal efficiencies for COD	
	concentrations (II-I)	110
Table 4.12	Calculated removal efficiencies for BOD	
	concentrations (II-I)	
Table 4.13	Tap water and raw wastewater analysis for phase II-	
	run II	115
Table 4.14	Water quality parameters analysis from different	
	locations for phase II- run II	116
Table 4.15	Calculated removal efficiencies for COD	
	concentrations (II-II)	119
Table 4.16	Calculated removal efficiencies for BOD	-
	concentrations (II-II)	121

Table 4.17	Tap water and raw wastewater analysis for phase III-	105
T-11- 4 10	run I	125
Table 4.18	Water quality parameters analysis from different locations for phase III- run I	126
Table 4.19	Calculated removal efficiencies for COD	120
1 abic 4.17	concentrations (III-I)	130
Table 4.20	Calculated removal efficiencies for BOD	130
14516 4.20	concentrations (III-I)	131
Table 4.21	Tap water and raw wastewater analysis for phase III-	131
10010 1121	run II	134
Table 4.22	Channel water analysis from different locations for	
	phase III- run II	145
Table 4.23	Calculated removal efficiencies for COD	
	concentrations (III-II)	139
Table 4.24	Calculated removal efficiencies for BOD	
	concentrations (III-II)	140
CHAPTER		
Table 5.1.	Fraction of COD removed for comparison trial	148
Table 5.2.	COD calculations due to concentration for	
	regression analysis - first trial	149
Table 5.3.	COD calculations due to concentrations for	
	regression analysis - second trial	151
Table 5.4.	COD calculations due to concentrations for	1.50
T-1-1- 5 5	regression analysis - third trial	153
Table 5.5.	COD calculations due to concentrations for	154
Table 5.6.	regression analysis - fourth trial BOD calculations due to concentrations for	134
Table 3.0.	regression analysis- first trial	155
Table 5.7.	BOD calculations due to concentrations for	133
Tuble 5.71	regression analysis - second trial	156
Table 5.8.	COD concentration through pilot length for S.P. first	100
	trial (I-I)	158
Table 5.9.	COD concentration through pilot length for S.P. first	
	trial (I-II)	158
Table 5.10.	COD concentration through pilot length for S.P. first	
	trial (II-I)	158
Table 5.11.	COD concentration through pilot length for S.P. first	
	trial (II-II)	159
Table 5.12.	COD concentration through pilot length for S.P.	
	second trial	159
Table 5.13.	COD concentration through pilot length for S.P.	160
Table 5.14.	COD concentration through pilot length for S.P.	
	third trial (average equation)	161