

Seismic and Well Logging Data Interpretation for Reservoir Properties Estimation at Beni Suef Oil Field, Egypt.

BY Neveen Abd-El-Monaem Mohamed El-Sayed Gundour (B. Sc. In Geophysics)

A THISIS

Submitted in partial fulfillment of the requirements of Master Degree of Science in Geophysics

Supervised by

Prof.Dr. Abdel-Khalek Mahmoud El-Werr

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

Dr. Ayman Shebl El-Sayed Saved

Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

Geophysics Department,

Faculty of Science, Ain Shams University

Lecturer of Geophysics,

Dr. Azaa Mahmoud Abd-Ellatif El Rawy

GEOPHYSICS DEPARTMENT **FACULTY OF SCIENCE** AIN SHAMS UNIVERSITY 2015

SUPERVISORS

Prof. Dr. Abdel-Khalek Mahmoud El-Werr

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

Dr. Ayman Shebl El-Sayed Sayed

Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

Dr. Azaa Mahmoud Abd-Ellatif El Rawy

Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

جامعة عين شمس كلية العلوم

تفسير البيانات السيزمية و تسجيلات الأبار لتعيين خواص الخزان لحقل بترول بنى سويف، مصر

رسالة مقدمة من

نيقين عبد المنعم محمد السيد غندور

(بكالوريوس العلوم) لاستكمال متطلبات الحصول على درجة الماجستير في العلوم في الجيوفيزياء

تحت اشراف

أ.د. عبد الخالق محمود الور أستاذ الجيوفيزياء - بقسم الجيوفيزياء كلية العلوم- جامعة عين شمس

د.عزة محمود عبد اللطيف الراوي مدرس الجيوفيزياء بقسم الجيوفيزياء كلية العلوم ـ جامعة عين شمس د. أيمن شبل السيد سيد مدرس الجيوفيزياء بقسم الجيوفيزياء كلية العلوم ـ جامعة عين شمس

قسم الجيوفيزياء كلية العلوم – جامعة عين شمس القاهره 2015

جامعة عين شمس كلية العلوم

رسالة ماجستير

إسم الطالبة: نيفين عبد المنعم محمد السيد غندور

عنوان الرسالة : تفسير البيانات السيزمية و تسجيلات الأبار لتعيين خواص الخزان لحقل بترول بنی سویف، مصر.

أسم الدرجة: ماجستير في العلوم - الجيوفيزياء

لجنة الاشراف:

أستاذ الجيوفيزياء غير المتفرغ بقسم الجيوفيزياء 1) أ.د. عبد الخالق محمود الور

كلية العلوم - جامعة عين شمس

أستاذ مساعد بقسم الجيوفيزياء

كلية العلوم - جامعة عين شمس

مدرس الجيوفيزياء بقسم الجيوفيزياء 3) د/ عزة محمود عبد اللطيف الراوي

كلية العلوم - جامعة عين شمس

لجنة التحكيم:

أستاذ الجيوفيزياء غير المتفرغ بقسم الجيوفيزياء 1) ١.د/ أ.د. عبد الخالق محمود الور

كلية العلوم - جامعة عين شمس

أستاذ الجيوفيزياء غير المتفرغ بقسم الجيوفيزياء

كلية العلوم - جامعة حلوان

مدير عام الجيوفيزياء جابكو شركة البترول البريطانية

2) ا.د/ فاروق إبراهيم متولى

2) د. أيمن شبل السيد سيد

3) د/ حاتم فاروق عويضة

تاريخ البحث: / 201

الدراسات العليا

أجيزت الرسالة بتاريخ ختم الإجازة:

> 201 / / 201 / /

موافقة مجلس الجامعة موافقة مجلس الكلية

> 201 / / 201 / /

جامعة عين شمس كلية العلوم

- إسم الطالبة: نيقين عبد المنعم محمد السيد غندور

- الدرجة العامية: ماجستير

- القسم التابع : قسم الجيوفيزياء

- إسم الكلية : كلية العلوم

- الجامعة : جامعة عين شمس

- سنة التخرج: 2008

- سنة المنح :2015

شكر

شكر السادة الأساتذة الذين قاموا بالإشراف وهم:

1) ا.د/ عبد الخالق محمود الور أستاذ الجيوفيزياء غير المتفرغ بقسم الجيوفيزياء

كلية العلوم - جامعة عين شمس

2) د/ أيمن شبل السيد سيد (الجيوفيزياء المناعد بقسم الجيوفيزياء المناعد المناعد

كلية العلوم - جامعة عين شمس

3) د/ عزة محمود عبد اللطيف الراوي مدرس الجيوفيزياء بقسم الجيوفيزياء

كلية العلوم - جامعة عين شمس

و كذلك شكر الهيئات الأتية:

1) الهيئة المصرية العامة للبترول

2) شركة قارون للبترول.

Note

The present thesis is submitted to Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1- Geophysical field measurements.
- 2- Numerical analysis and computer programming.
- 3- Elastic wave theory.
- 4- Seismic data acquisition.
- 5- Seismic data processing.
- 6- Seismic data interpretation.
- 7- Seismology.
- 8- Engineering seismology.
- 9- Deep seismic sounding.
- 10-Structure of the earth.

She successfully passed the final examinations in these courses. In fulfillment of the language requirement of the degree, she also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Said Abd El Maaboud Aly

ACKNOWLEDGMENTS

Firstly and before all, my complete praise is for Almighty God, Allah, lord of the universe, who guided and blessed me during the preparation of this work.

I would like to thank and express my great appreciation to Prof. AbdEl Khalek El-Werr, professor of Geophysics, Faculty of Science, Ain Shams University, Dr. Ayman Shebl, Teacher of Geophysics, Faculty of Science, Ain Shams University and Dr. Azza El-Rawy, Teacher of Geophysics, Faculty of Science, Ain Shams University for their supervision, scientific advice and critical reading and reviewing the work.

I also extend my great appreciation to Geophysicist Ahmed Said, Qarun Petroleum Company, for his help and support in this work.

I also wish to thank the Egyptian General Petroleum Corporation and Qarun Petroleum Company for providing the data used in this work.

Finally, from all my heart, I would like to express my deepest gratitude and appreciation to my family for their help and encouragement.

ABSTRACT

The present work was devoted to evaluate the reservoir properties for Beni Suef Oil Field. Beni Suef Oil Field is located in the Western Desert, and covers the western part of Beni suef Basin. It is restricted between latitude 29 ° 00' N and 29 ° 87' N and longitudes 30° 30' E and 32°00' E. The seismic interpretation, well log analysis and formation pressure evaluation are used to define the subsurface geological structure and the petrophysical properties favoring for the oil accumulation of the hydrocarbon materials and they are also used to determine reservoir driving mechanisms and fluid migration paths that control the behavior of fluids within reservoir.

Such work was conducted through several steps, started by reviewing the geologic setting of the study area to shed lights on the subsurface geology, subsurface stratigraphy, and tectonics.

Seismic interpretation performed in the study area for twenty-eight seismic lines in both strike and dip directions to identify the subsurface structure for the tops of Formations of interest (Abu Roash, Bahariya and Kharita Formations). Close investigation of these sections show that the area is affected by a group of normal faults with different trends and throws. These faults form together horsts and grabens structures.

The well logging analysis carried out for six wells in the study area by using a petrophysics computer program (TechLog 2011) developed by Schlumberger. The procedure includes the determination of water resistivity by using Pickett crossplots, Rwa and SP methods.. The volume of shale (Vsh) is calculated by using GR log as a single indicator and Neutron-Density log as a double indicator. Also, the corrected porosity was calculated by: Sonic, Density and Neutron logs. Formation pore pressure calculated by

several methods: pre-drilling method using seismic velocities, during drilling method using d-exponent and after-drilling method using well logs data.

As the formation pore pressure estimation is very important for drilling and reservoir engineers and if it predicted or calculated well it will help in avoiding many problems like well kicks, lost circulation, blowouts, stuck pipe, excessive costs and borehole instability. In this work we do not have measured RFT data so we used several methods for calculating the formation pore pressure: 1) before drilling using seismic velocities, 2) during drilling using drilling and mud parameters, and 3) after drilling using nearby well logs data.

The pre-drilling methods which are used for predicting the pore pressure are: the equivalent depth method, Eaton method and modified Eaton method. All these methods require knowledge of the interval velocities that were calculated from the available root mean square velocities. Also, the available drilling parameters (rate of penetration (ROP), weight on bit (WOB), rotary speed (N), bit diameter (d_b), Formation fluid density and mud density) used for calculating the formation pore pressure during drilling. Also, we used the nearby measured well logs as porosity logs for calculating the formation pore pressure.

Pore pressure gradient maps constructed for Abu Roash and Bahariya Formations that exhibits the locations of both higher and lower pressure gradients to predict the possible horizontal fluid flow (migration paths) for the proposal of new prospects. Finally, it is possible to calculate and recommend the required heavier mud weight to drill.

TABLE OF CONTENTS

Subject	Page
Acknowledgments	i
Abstract	ii
List of Figures	iv
List of tables	iv
Chapter One: Introduction	1
1.1. Location of the study Area	1
1.2. Previous Exploration Works	1
1.3. Aim and Objectives	3
1.4. Available Data	3
1.5. Methodology and Techniques	4
Chapter Two: Regional Geologic Setting	6
2.1. Introduction	6
2.2. Subsurface Stratigraphy	6
2.2.1. Pre-Cambrian	8
2.2.2. Cretaceous	8
2.2.2.1. Lower Cretaceous	8
2.2.2.1.1. Kharita Formation (Albian)	10
2.2.2.2. Upper Cretaceous	10
2.2.2.2.1. Bahariya Formation (Cenomanian)	10
2.2.2.2. Abu Roash Formation (Cenomanian-Turonian)	11
2.2.2.2.3. Khoman Formation (Campanian- Maastrictian)	11
2.2.3. Tertiary	11
2.2.3.1. Apollonia Formation (Eocene)	11
2.2.3.2. Dabaa Formation (Oligocene)	12

2.3. Regional tectonic setting	12
2.4. Regional Structure Setting	17
Chapter Three: Seismic Data Interpretation	19
3.1. Introduction	19
3.2. Available Seismic Data in the Study Area	20
3.3. Seismic Data Interpretation	22
3.3.1. Seismic Data Interpretation Technique	22
3.3.2. Seismic Data Interpretation Output	24
3.3.2.1. Interpretation of seismic sections	24
3.3.2.2. Interpretation of seismic maps	31
3.3.2.2.1. Time structure maps on the tops of the interested formations	33
3.3.2.2.2. Average velocity maps on the tops of the interested formations	37
3.3.2.2.3. Depth structural contour maps on tops of the interested formations	49
Chapter Four: Well Logging Analysis	58
4.1. Introduction	58
4.2. Well log process and interpretation	59
4.2.1. Present Study	59
4.3. Procedures of Reservoir Evaluation	59
4.3.1. Shale Volume Determination Methods (Vsh)	60
4.3.1.1. Single- Curve Indicators	60
4.3.1.2. Double- Curve Indicators	61
4.3.2. Present Study	62
4.4. Formation Porosity Determination Methods (φ)	62
4.4.1. Density Log (Φ_D)	62
4.4.2. Neutron Log (Φ_N)	63
4.4.3. Sonic Log ($\Phi_{\rm S}$)	64

4.4.4. Determination of effective porosity	66
4.4.5. Present Study	66
4.5. Evaluation of Water Resistivity (RW)	67
4.5.1. Present Study	69
4.6. Determination of Fluid Saturation	73
4.6.1. Determination of Water Saturation in Uninvaded Zone (Sw)	73
4.6.1.1. Archie's Model	73
4.6.1.2. Indonesia Model	73
4.6.2. Determination of Water Saturation in Flushed Zone (Sxo)	74
4.6.2.1. Archie's Model	74
4.6.2.2. Indonesia Model	74
4.6.3. Determination of Hydrocarbon Saturation	75
4.7. Lithology Determination and Interpretation	76
4.7.1. Neutron –Density Crossplot	76
4.7.2. M-N Crossplot	84
4.7.3. Litho-saturation Crossplots	92
4.8. Horizontal Distribution of Petrophysical Parameters	123
4.8.1. Horizontal Distribution Maps for Abu Roash Member (A)	123
4.8.2. Horizontal Distribution Maps for Bahariya Formation	130
4.8.3. Horizontal Distribution Maps for Kharita Formation	137
Chapter Five: Formation Pressure Evaluation	145
5.1.Introduction	145
5.1.1.Basic Terminology	146
5.1.2. Overpressure Generating Mechanisms	145
5.1.3. Abnormal Pore Pressure Criteria	154
5.2. Research Methodology	155

5.2.1. Overpressure estimation methods	155
5.2.1.1. Overpressure Estimation before Drilling Using Seismic Velocities	155
5.2.1.1.1. Equivalent depth method	155
5.2.1.1.2. Bowers' Method	156
5.2.1.1.3. Eaton Method	157
5.2.1.2. Overpressure Estimation while Drilling Using d-exponent method	161
5.2.1.2.1. Jorden and Shirley model	162
5.2.1.2.2. Rehm and McClendon	162
5.2.1.2.3. Rehm and McClendon correlation	164
5.2.1.2.4. Zamora correlation	164
5.2.1.2.5. Eaton correlation	165
5.2.1.3. Pore pressure prediction from porosity method	166
5.3. Results and Interpretation	171
5.3.1. Results of Pore Pressure Prediction from Well Logs (Porosity Logs)	171
5.3.2. Results of Pore Pressure Prediction While Drilling	177
5.3.3. Results of Pore Pressure Prediction Pre-Drilling Using Seismic Velocities	180
Summary and Conclusion	197
Appendix (A)	204
Reference	216
Arabic Summary	223

List of Figures

Figure No.	Figure Caption	Page No.
1-1	Location map of Beni Suef Basin	2
2-1	The General Stratigraphic column of North Western Desert	7
2-2	The stratigraphic column of the Beni Suef Basin	9
2-3	Western Desert basinal and high areas	13
2-4	Arabo Nubian Shield Craton Elements Map(EGPC,1992)	15
2-5	Main geotectonic cycles in the Western Desert of Egypt (After EGPC, 1992)	16
2-6	North Western Desert Regional Structure Map	18
3-1	Shot point location map of the study area	21
3-2	Interpreted seismic section (CROSSLINE-2470)	26
3-3	Interpreted seismic section (CROSSLINE-2295)	27
3-4	Interpreted seismic section (INLINE-10335)	33
3-5	Interpreted seismic section (INLINE-10155)	30
3-6	Time structural contour map on the top of Abu Roash Member (A)	34
3-7	Time structural contour map on the top of Bahariya Formation	35
3-8	Time structural contour map on the top of Kharita Formation	36
3-9	The drift between T-D curves from well data and seismic data	39
3-10	The drift between average and rms velocities curves with depth	40
3-11	Velocity drift map on the top of Abu Roash Formation	41
3-12	Velocity drift map on the top of Bahariya Formation	41
3-13	Velocity drift map on the top of Kharita Formation	42
3-14	Heterogeneity Factor map on the top of Abu Roash Formation	44
3-15	Heterogeneity Factor map on the top of Bahariya Formation	44
3-16	Heterogeneity Factor map on the top of Kharita Formation	45
3-17	3D view for the calculated average velocity	46
3-18	Average velocity map on the top of Abu Roash Member (A)	47
3-19	Average velocity map on the top of Bahariya Formation	48