

BEHAVIOR OF TWO WAY RC SLABES STRENGTHENED WITH HYBRID FRP LAMINATES

Structural Engineering Department

By

Moataz Awry Mahmoud Abd-Elhafez

B.Sc. 2004, Structural Division Civil Engineering Department Ain Shams University

Thesis Submitted in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE

in

Civil Engineering (Structural)

Supervised by

Prof. Dr. Amr Ali Abdelrahman

Professor of Concrete Structures, Structural Department, Ain Shams University

Dr. Tamer Hassan Kamal Elafandy

Assistant Professor., RC Dept, Housing and Building National Research Center, Giza, Egypt

Cairo - 2010

Ain Shams University Faculty of Engineering Structural Engineering Department

BEHAVIOR OF TWO WAY RC SLABES STRENGTHENED WITH HYBRID FRP LAMINATES

By

Moataz Awry Mahmoud Abd-Elhafez

B.Sc. 2004, Structural Division Civil Engineering Department Ain Shams University

Thesis
Submitted in partial fulfillment of the requirements of the degree of
MASTER OF SCIENCE

in

Civil Engineering (Structural)

Referees Committee:

Prof. Dr. Hamdi Hamed Shaheen Professor of Concrete Structures,	
RC departement	
Housing and Building National	
Research Center, Giza, Egypt	
Prof. Dr. Omar Ali Elnawawy	
Professor of Concrete Structures,	
Structural Engineering Department,	
Ain Shams University	
Prof. Dr. Amr Ali Abdelrahman	
Professor of Concrete Structures,	
Structural Engineering Department,	
Ain Shams University	

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in partial

fulfillment of the requirements for the degree of Master of Science in Civil

Engineering (Structural).

The work included in this thesis was carried out by the author at

reinforced concrete lab of the Housing and Building National Research center.

No part of this thesis has been submitted for a degree or qualification at

any other university or institute.

Date

: / / 2010

Name

Moataz Awry Mahmoud Abd-Elhafez

Signature

ACKNOWLEDGMENTS

First of all, I thank **GOD** who guided and helped me to finish this work in the proper shape.

I would like to express my deepest appreciation to **Prof. Dr. Amr Ali Abdelrahman**, Professor of Concrete Structures, Faculty of Engineering, Ain Shams University, for his guidance and valuable suggestions.

I would like to express extremely grateful to **Dr. Tamer Hassan Kamal Elafandy**, Assistant Professor of Concrete Structures, Housing and Building National Research Center, Giza, Egypt, for his experienced advice, continuous and deep encouragement through all phases of the work.

I also would like to thank **Dr. Hamdi Hamed Shaheen**, Professor of Concrete Structures, Housing and Building National Research Center, who has provided me with valuable advice during my research.

I also would like to thank **Dr. Omar Ali Elnawawy**, Professor of Concrete Structures, Faculty of Engineering, Ain Shams University, for his valuable suggestions.

Special thanks to **Engineer Fareed Mahmoud Mahmoud Elgabbas** for his support .

Finally, I would like to thank my family specially my **Mother** and spirit of my **Father** for their continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times.

ABSTRACT

In the last two decades, the use of advanced composite materials such as fiber reinforced polymers, (FRP), in strengthening reinforced concrete, (RC), structural elements have been increasing. Researches, design guidelines, and codes concluded that externally bonded FRP could increase capacity of RC elements efficiently. However, the linear stressstrain characteristics of FRP up to failure and lack of yield plateau have a negative impact on the overall ductility of the strengthened RC elements. Strengthening of two-way slabs with FRP in the two directions represents a challenge due to the anticipated reduction in the strength and ductility at onset of failure of FRP in one direction. Not only the linear characteristics of FRP will reduce the slab ductility but also the released energy caused by rupture or bond failure of FRP in one direction, which will affect the bond between the concrete and FRP in the other direction. Use of two types of FRP laminates, which consists of a combination of either carbon and glass fibers or glass and aramid fibers change the behavior of the material to a non-linear behavior (Blarabi et.al.1999) and (Hosny et.al.2005). This thesis aims to study the performance of reinforced concrete two-way slabs strengthened by FRP laminates in two directions.

The experimental program consists of a total of eight RC two-way slabs with overall dimensions equal to 1500 x 1500 x 70-mm with clear spans equal to 1400 x 1400-mm. The slabs were tested under distributed loading up to failure in order to examine its flexural behaviour. Different fiber types, orientation and different percentages of CFRP and GFRP were attached on the slabs to predict the best strengthening scheme. An

analytical model based on the stress-strain characteristics of concrete, steel and FRP was adopted and a good agreement was obtained with experimental results.

Keywords: CFRP, Composite material, GFRP, HFRP, Hybrid, Reinforced Concrete Strengthening and Two Way Slab.

TABLE OF CONTENTS

ABSTRACT	
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF EQUATIONS	
NOTATION	XV11
CHAPTER (1): INTRODUCTION	1
1.1 General.	2
1.2 Objectives	4
1.3. Scope and Contents	4
CHAPTER (2): LITERATURE REVIEW	8
2.1 Introduction	9
2.2 FRP Types, Products, Components and Properties	10
2.2.1 Components and Products	10
2.2.2 Fiber Types and Properties	
2.3 Applications of FRP	20
2.3.1 Applications of Carbon and Glass Fiber Laminates i	
Retrofitting in the Middle East	20
2.4 Ductility of Concrete Members	26
2.4.1 Ductility Measures	27
2.4.2 Ductility of Concrete Members with FRP	29
2.4.3 Ductility Evaluation	31

2.5 Strengthing of RC Two-Way Slabs39
2.5.1 Strengthing using Steel Plates39
2.5.2 Strengthing using FRP
2.5.3 Analysis of Two-Way Slabs
CHAPTER (3): THE EXPERIMENTAL PROGRAM54
3.1 General55
3.2 Test Specimens56
3.3 Fabrication of Tested Specimens66
3.3.1Fabrication of Concrete Slabs66
3.3.2 Application of Strengthening Schemes68
3.4 Material Properties71
3.4.1 Concrete71
3.4.2 Steel
3.4.3 GFRP, CFRP Laminates and Epoxy Paste and Resin73
3.5 Test Set-up
3.6 Instrumentation
CHAPTER (4): RESULTS OF THE EXPERIMENTAL
PROGRAM80
4.1 General81
4.2 Test Results81
4.2.1 Result of specimen S0084
4.2.2 Result of specimen S0187

4.2.3 Result of specimen S0290)
4.2.4 Result of specimen S0393	3
4.2.5 Result of specimen S0496	5
4.2.6 Result of specimen S0599)
4.2.7 Result of specimen S06	2
4.2.8 Result of specimen S07	5
CHAPTER (5): DISCUSSION OF THE EXPERMENTAL	
RESULTS10	9
5.1 General	0
5.2 Energy and Ductility11	0
5.3 Discussion of the Experimental Results11	1
5.3.1 Fiber Type	1
5.3.2 Reinforcement Ratio of FRP Laminates and Technique	;
of CFRP Fixation113	3
5.3.3 Fiber Direction	7
CHAPTER (6): ANALYTICAL STUDY12	2
6.1 General	23
6.2 Analysis Procedure using Strain Compatibility Approach	l.
	24
6.2.1 Failure Criteria	26
6.2.2 Material Modeling	27

6.2.2.1 Concrete	128
6.2.2.2 Steel	130
6.2.2.3 CFRP Laminates	130
6.2.2.4 GFRP Laminates	130
6.2.3 Analysis Procedure using Finite Element Progra	ım and
Yield Line Theory	131
6.2.4 Deflection Prediction	132
6.3 Comparison between Predicted and Experimenta	al
Results	136
CHAPTER (7): SUMMARY AND CONCLUSIONS	156
7.1 Summary	157
7.2 Conclusions	158
7.3 Recommendations for Future Research	162
REFERANCES	164

LIST OF FIGURES

Fig.2.1 : Woven fabrics
Fig.2.2 : Stitch-bonded fabrics
Fig.2.3 : Roving fabrics
Fig.2.4 : FRP products
Fig 2.5 :Idealized tensile stress-strain curves for different FRP
(Lecture Notes (1998))19
Fig 2.6: The stress strain-curves of FRP components
Fig.2.7: Several cracks occurred in the concrete slab and beams due to
differential settlement of the foundation20
Fig.2.8: CFRP plates were bonded to the concrete surface for flexure
retrofitting21
Fig.2.9: CFRP sheets were bonded to the concrete surface for shear
retrofitting21
Fig.2.10: CFRP plates were bonded to the lower concrete surface for
flexure retrofitting at mid-span22
Fig.2.11: CFRP plates were bonded to the lower concrete surface for
flexure retrofitting at mid-span22
Fig.2.12: CFRP plates bonded to the upper concrete surface for flexure
retrofitting at column locations23
Fig.2.13: CFRP plates bonded to the upper concrete surface for flexure
retrofitting at column locations23
Fig.2.14: CFRP plates and sheets
Fig.2.15: Pull-off test for concrete surface
Fig.2.16: Mechanical anchorage for not satisfied anchorage length of
CFRP plates24
Fig.2.17: RC arch supported on brick columns

Fig.2.18: Installation of anchor fibers
Fig.2.19: Large widths flexural cracks
Fig.2.20: Strengthening of piles26
Fig.2.21: Ductility index proposed by Abdelrahman et.al.199537
Fig.2.22: Overall factor of reinforced and prestressed beams with FRP
(Jaeger et al.1995)
Fig.2.23: Proposed ductility index by Namman et.al.1995
Fig.2.24: Ductility index of beams prestressed by CFRP and steel
based on equation 2-2 (Abdelrahman et.al.)38
Fig.2.25: Tensile stress-strain of hybrid reinforcement
Fig.2.26: Grace triaxial braided fabric
Fig.2.27: Elafandy hybrid uni direction FRP laminates for strengthening
RC T-beams39
Fig.3.1: Test specimens
Fig.3.1: Test specimens
Fig.3.2: Steel reinforcement detail of the test specimens
Fig.3.2: Steel reinforcement detail of the test specimens
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260Fig.3.5: Strengthening-scheme of spec-S0361
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260Fig.3.5: Strengthening-scheme of spec-S0361Fig.3.6: Strengthening-scheme of spec-S0462
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260Fig.3.5: Strengthening-scheme of spec-S0361Fig.3.6: Strengthening-scheme of spec-S0462Fig.3.7: Strengthening-scheme of spec-S0563
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260Fig.3.5: Strengthening-scheme of spec-S0361Fig.3.6: Strengthening-scheme of spec-S0462Fig.3.7: Strengthening-scheme of spec-S0563Fig.3.8: Strengthening-scheme of spec-S0664
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260Fig.3.5: Strengthening-scheme of spec-S0361Fig.3.6: Strengthening-scheme of spec-S0462Fig.3.7: Strengthening-scheme of spec-S0563Fig.3.8: Strengthening-scheme of spec-S0664Fig.3.9: Strengthening-scheme of spec-S0765
Fig.3.2: Steel reinforcement detail of the test specimens57Fig.3.3: Strengthening-scheme of spec-S0159Fig.3.4: Strengthening-scheme of spec-S0260Fig.3.5: Strengthening-scheme of spec-S0361Fig.3.6: Strengthening-scheme of spec-S0462Fig.3.7: Strengthening-scheme of spec-S0563Fig.3.8: Strengthening-scheme of spec-S0664Fig.3.9: Strengthening-scheme of spec-S0765Fig.3.10: Ply-wood form preparation66

Fig.3.14: Surfacing and smoothing of concrete	68
Fig.3.15: Surface preparation	69
Fig.3.16: Surface leveling using Epoxy paste	69
Fig.3.17: Installing the FRP laminates	70
Fig.3.18: Ensuring fixation of FRP using laminating roller	70
Fig.3.19: Compression testing machine	72
Fig.3.20: Digital tension machine	73
Fig.3.21: GFRP laminates	74
Fig.3.22: CFRP laminates and epoxy resin	75
Fig.3.23: Sikadure-CF-31	75
Fig.3.24: Sikadure-330	75
Fig.3.25: Test Set-up for all specimens	76
Fig.3.26: Steel strain gauge installation	77
Fig.3.27: Data acquisition system	78
Fig.3.28: Strain gauge positions	78
Fig.3.29: LVDT positions	79
Fig.3.30: LVDT	79
Fig.3.31: load cell	79
Fig.4.1: Maximum measured load for all specimens	84
Fig.4.2: Maximum measured deflection for all specimens	84
Fig.4.3: Load-mid and third-span deflection relationship for spe	ecimen
S00	85
Fig.4.4: Deflection of specimen S00 along the slab span at yield	d,
maximum and failure load	86
Fig. 4.5: Failure and crack pattern of control specimen	86
Fig.4.6: Load-mid and third-span deflection relationship for spe	ecimen
S01	88

Fig.4.7: Glass load- strain relationship for specimen S0188
Fig.4.8: Deflection of specimen S01 along the slab span at yield,
maximum and failure load89
Fig. 4.9: Failure and crack pattern of S0189
Fig.4.10: Load-mid and third-span deflection relationship for specimen
S0291
Fig.4.11: Steel load- strain relationship for specimen S0291
Fig.4.12: Deflection of specimen S02 along the slab span at yield,
maximum and failure load92
Fig. 4.13: Failure and crack pattern of S02
Fig.4.14: Load-mid and third-span deflection relationship for specimen
S0394
Fig.4.15: Steel and Glass load-strain relationship for specimen S0394
Fig.4.16: Deflection of specimen S03 along the slab span at yield,
maximum and failure load95
Fig. 4.17: Failure and crack pattern of S0395
Fig.4.18: Load-mid and third-span deflection relationship for specimen
S0497
Fig.4.19: Steel, glass and carbon load- strain relationship for specimen
S04
Fig.4.20: Deflection of specimen S04 along the slab span at yield,
maximum and failure load98
Fig. 4.21: Failure and crack pattern of S0498
Fig.4.22: Load-mid and third-span deflection relationship for specimen
S05100
Fig.4.23: Steel and Glass load- strain relationship for specimen
S05 100

Fig.4.24: Deflection of specimen S05 along the slab span at yield,
maximum and failure load101
Fig. 4.25: Failure and crack pattern of S05
Fig.4.26: Load-mid and third-span deflection relationship for specimen
S06103
Fig.4.27: Steel and Glass load- strain relationship for specimen
S06103
Fig.4.28: Deflection of specimen S06 along the slab span at yield,
maximum and failure load104
Fig. 4.29: Failure and crack pattern of S06
Fig.4.30: Load-mid and third-span deflection relationship for specimen
S07
Fig.4.31: Steel ,Glass and carbon load- strain relationship for specimen
S07106
Fig.4.32: Deflection of specimen S07 along the slab span at yield,
maximum and failure load107
Fig. 4.33: Failure and crack pattern of S07 CFRP ruptured while GFRP
in good contact with concrete
Fig. 4.34: Failure and crack pattern of S07 CFRP and GFRP ruptured
Fig.5.1 : Load –mid span deflection curve(effect of FRP type)112
Fig.5.2: Load –mid span deflection curve(effect of bonding and un-
bonding CFRP at intersection with GFRP for specimens having high
percentage of CFRP)