Obese Egyptian Children: What About Their Gut Flora?

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

Ibrahim Akeel El-Sharkawy

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}h$ Faculty of Medicine - Mansoura University

Supervised by

Prof. Dr. Sanaa Youssef Shaaban

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Prof. Dr. Ghada Abd El-Wahed Ismail

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Marwa Hosni Abd El-Hamed

Noy'c poly El Gebaly Lecturer Of Pediatrics Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

ACKNOWLEDGMENT

Before all, Thanks to ALLAH.

I would like to express my profound gratitude to Professor Doctor/ Sanaa Youssef Shaaban,, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her most valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.

I am also grateful to Professor Doctor/ Ghada Abd El-Wahed Ismail Professor of Clinical Pathology, Faculty of Medicine Ain Shams University for her unique effort, considerable help, assistance and knowledge she offered me throughout the performance of this work.

My special thanks and deep obligation to Doctor/ Marwa Hosni lecturer of Pediatrics, Ain Shams University, for her continuous encouragement and supervision and kind care.

I would like also to thank all staff members of Pediatric Medicine Department especially Doctor/ Yasmin Gamal for her help, deep support and blessings. Without her effort, this work wouldn't have seen the light.

Last but not least I would like to express my deep thanks and gratitude to all my Patients, hoping them a good Health.

Ibrahim El-Sharkawy

<u>Index</u>

List of Figures	iii
List of Tables	iv
List of Abbreviations	v
Introduction	1
Aim of the work	3
Review of literature	4
Patients and methods	89
Results	104
Discussion	121
Summary	132
Conclusions	134
Recommendations	135
References	136
Arabic Summary	164

List of Figures

Fig. (1)	Complications of Childhood Obesity	22
Fig. (2)	Structure and digestive functionality of the human GI tract	55
Fig. (3)	Possible mechanisms associated with the relationship between intestinal microbiota and obesity.	83
Fig. (4)	Standing height measurement	91
Fig. (5)	Frankfurt plane determination	92
Fig.(6)	WHO Height-for-Age 5-19 years Girls percentiles	94
Fig. (7)	WHO Height-for-Age 5-19 years boys percentiles	95
Fig. (8)	WHO Body mass index-for-age 5-19 years girls percentiles	96
Fig. (9)	WHO Body mass index-for-age 5-19 years boys percentiles	97
Fig. (10)	International Obesity Task Force (IOTF) criteria Curves	98
Fig. (11)	Anaerobic Gut flora distribution in stool of Normal weight Children	110
Fig. (12)	Anaerobic Gut flora distribution in stool of Obese Children	110
Fig.(13)	Anaerobic Gut flora distribution in stool of Overweight Children	111
Fig.(14)	Clostridia count of the studied Children	112
Fig.(15)	Bacteroides count of the studied Children	113
Fig.(16)	Bifidobacteria count of the studied Children	114
Fig.(17)	Lactobacilli count of the studied Children	115
Fig.(18)	Mode of delivery distribution of the studied children	117
Fig.(19)	Breast-fed and formula-fed distribution of the studied children	118
Fig.(20)	Time of weaning distribution of the studied children	119

List of tables

Table (1)	The prevalence of obesity in Egyptian youth according to the national Egyptian survey in 2004	7
Table (2)	International Obesity Task Force (IOTF) criteria cut off points	99
Table (*)	Age distribution of the studied children	104
Table (4)	Gender distribution of the studied children	105
Table (°)	Weight distribution of the studied Children	105
Table (\(\)	Height distribution of the studied children	106
Table (V)	BMI distribution of the studied Children	106
Table (^)	Mid arm circumference distribution of the studied Children	107
Table (4)	Waist circumference distribution of the studied children	107
Table (1.)	Waist-to-hip ratio distribution of the studied children	108
Table (11)	Waist-to-height ratio distribution of the studied Children	108
Table (1 ^Y)	Quantitative & percentage ratios of anaerobic gut flora in Cases and control	109
Table (1 ^r)	Clostridia count of the studied Children	112
Table (1 [£])	Bacteroides count of the studied Children	113
Table (1°)	Bifidobacteria count of the studied Children	114
Table (17)	Lactobacilli count of the studied Children	115
Table (1 ^V)	Correlation between BMI and Clostridia colony counts	116
Table (1 ^{\(\Lambda\)})	Mode of delivery distribution of the studied children	117
Table		
(19)	Breast-fed and formula-fed distribution of the studied children	118
Table (2·)	Time of weaning distribution of the studied children	119
Table (21)	Caloric intake distribution of the studied Children	120

List of Abbreviations

16s rRNA : 16S ribosomal ribonucleic acid

AgRP : Agouti-Related Protein

AMPK : Adenosine monophosphate-activated protein kinase

ARC : Arcuate nucleus

ARs : adrenergic receptors

ATP : Adenosine triphosphate

BAT : Brown Adipose Tissue

BBS : Bardet-Biedl syndrome

BCFA: Branched chain fatty acids

BMI : Body Mass Index

CB1 : Cannabinoid-1 receptors

CCK : Cholecystokinin

CD : Crohn's Diseas

CDC : Centers for Disease Control

CFU : Colony forming unit

CRH : Cytokine receptor homology

CTA : Conditioned Taste Aversion

CVD : Cardiovascular Disease

DEXA : Dual Energy X-ray Absorptiometry

DGGE : Denaturing gradient gel electrophoresis

DMN : Dorsomedial nucleus

Fiaf : Fast-induced adipocyte factor

FISH : Fluorescent in situ hybridization

FTO : fat mass and obesity-associated

GHS : Growth hormone secretagogue

GI : Gastro intestinal

GLP-1 : Glucagon like peptide-1

HC : Hip Circumference

IBS : Irritable bowel syndrome

IOTF : International Obesity Task Force

LHA : Lateral hypothalamic area

LMBS : Laurance Moon Bardet Biedle

LPL : Lipoprotein lipase

MAMP : Microbe-associated molecular pattern

MCH : Melanin Concentrating Hormone

mRNA : Messenger RNA

NEC : Necrotizing enterocolitis

NPY : Neuropeptide Y

OSAS : obstructive sleep apnea syndrome

PCOS : Polycystic ovary syndromePCR : Polymerase chain reaction

POMC : Pro-opiomelanocortin
PP : Pancreatic polypeptide
PTC : Pseudotumour cerebri

PVN : paraventricular nucleusPWS : Prader-Willi syndrome

PYY : Peptide YY

qPCR : Quantitative polymerase chain reaction

RNA : Ribonucleic acid

SCFA : Short chain fatty acidSES : Socioeconomic statusSFT : Skinfold thickness

SI : Small intestine

SNS : Sympathetic Nervous System

TGGE : Temperature gradient gel electrophoresis

TNF- α : Tumor necrosis facctor alpha

TrkB : tyrosine kinase BUC : Ulcerative Colitis

UCP1 : uncoupling protein 1WAT : White Adipose TissueWC : Waist Circumference

WHO : World Health Organiztion

WHR : Waist-to-hip ratio

WHtR : Waist-to-height ratio

INTRODUCTION

Introduction

Obesity has been rising in developing countries. Egypt is one of the countries in the world where the problem of obesity has been nearing an epidemic level (*Asfaw*, 2007).

Obesity is viewed as one of the important public health problems of our times, and the velocity of propagation is highest in children (*Owen et al.*, 2005).

This is a serious public health concern because obese children and adolescents are at an increased risk for various physical mental, and emotional health problems, including impaired glucose tolerance, insulin resistance, atherosclerosis, coronary heart disease in adulthood, later development of eating disorders and low self-esteem (*Seo and Sa*, 2010)

Children may find themselves in a vicious circle: obese children often become obese adults and maternal obesity overnourishes the fetus, thereby programming adult size and health with a heightened risk of obesity later in life (*Lawlor et al.*, 2007).

Gut microbiota is essential for intestinal development, homeostasis and protection against pathogenic challenge; moreover, gut microbes are involved in metabolic reactions, with harvest of energy ingested but not digested by the host; they have also trophic effects on the intestinal epithelium, by favouring the development of intestinal microvilli, and play a fundamental role in the maturation of the host's innate and adaptive immune responses (*Montalto et al.*, 2009).

Overall, a balanced gut microbiota composition confers benefits to the host, while microbial imbalances are associated with metabolic and immune-mediated disorders. The composition of the gut microbiota is influenced by endogenous and environmental factors (diet, antibiotic intake, xenobiotics, etc.).(*Laparra and Sanz*, 2010).

Recent evidence, primarily from investigations in animal models, suggests that the gut microbiota affects nutrient acquisition and energy regulation. Evidence suggests that the metabolic activities of the gut microbiota facilitate the extraction of calories from ingested dietary substances and help to store these calories in host adipose tissue for later use (*DiBaise et al.*, 2008).

In addition to the effect on energy harvest, the bacterial microbiota may also contribute to the inflammatory state present in obesity. Bacterial lipopolysaccharide (LPS) derived from gut microbiota acts as a trigger for systemic inflammation and that chronic metabolic endotoxemia results in obesity and insulin resistance (*Cani et al.*, 2007).

The identification of the gut microbiota as an environmental factor that modulates host energy and lipid metabolism has revealed a novel therapeutic target to treat metabolic diseases (*Bäckhed*, 2010).

AIM OF THE WORK

Aim of the work

- 1 A pilot study to identify the predominant gut flora in obese versus non obese Egyptian children.
- 2 A trial to assess the interrelashionship between type of gut flora and degree of obesity.

REVIEW OF LITERATURE

Review of Literature

Obesity

Obesity has been rising in developing countries. Egypt is one of the countries in the world where the problem of obesity has been nearing an epidemic level. Nearly 70% of adult women and 48% of men in Egypt are overweight or obese according to 1998 figures (*Asfaw*, 2007).

Obesity is becoming a major public health problem throughout the world. It is now the second leading cause of death in the United States and is associated with significant, potentially life-threatening comorbidities (*Cheah and Kam*, 2005).

The consequences of overweight and obesity are multifaceted, including physical, psychological, social, and economic impairments. On the physical level a range of health related effects may occur, affecting different body parts. Obesity may have several short-term consequences (for example social discrimination, lower quality of life, suffering of chronic diseases) and long-term consequences (for example persistence of obesity, increased morbidity, a higher prevalence of elevated CVD risk factors in adulthood) (*Reilly et al.*, 2003).

Among children and adolescents clinical consequences of overweight and obesity may not appear yet and are therefore less evident at this age. However, elevated levels of CVD risk factors have also been documented in obese children (*Weiss et al., 2004*).

Definition:

Childhood obesity is a medical condition in which a child or teenager has excessive body fat that is accumulated to the extent that it may have an adverse effect on health, leading to reduced life expectancy and/or increased health problems (*Raj and kumar*, 2010).

The Centers for Disease Control and Prevention (CDC) has defined overweight in children as falling between the 85th and 95th percentile for sex and age on the body mass index (BMI) growth chart. Obesity is defined as exceeding the 95th percentile for sex and age for BMI (*Ogden* & *Flegal*, 2010)

Various organizations have advocated different methods of classifying childhood obesity. For example, according to the CDC, the best tool for monitoring weight in children is the body mass index(BMI), which is first calculated based on the child's weight and height, then plotted according to age and gender on specific charts (*CDC*, 2011).

The World Health Organization (WHO) does not state a preference for one method over another, noting that measuring obesity is challenging because there is no standard definition worldwide. Thus, WHO has developed several charts and tables for clinicians to use to assess a child's weight status. These include weight-for-age, weight-for-height, BMI-forage and triceps skin fold-for-age, among others (WHO, 2011).