

Post Refractive Surgery High Order Aberrations Causes, Prophylaxis and Treatment

Essay

Submitted for Partial Fulfillment of the Master Degree in Ophthalmology

By

Mohamed Samy Mohamed Samir

MB-BCH, Faculty of Medicine - Ain Shams University

Supervisors

Prof. Dr. Tarek Maamoon

Professor of Ophthalmology
Faculty of Medicine-Ain shams University

Dr. Emad Elsawy

Lecturer of Ophthalmology
Faculty of Medicine-Ain shams University

Faculty of Medicine
Ain Shams University
2015

Contents

	page
List of Figures	I
List of Tables	IV
List of Abbreviations	V
CHAPTER ONE: Introduction	
Causes and Sources of Vision Blurring In The Human Eye	1
What Is Aberrometry?	5
Wavefront	6
Zernicke's Polynomials	8
Importance of WavefrontVisual Problems Caused by HOAs	11
Wavefront Analysis	12 16
IOL and HOAs	16
What is Q VALUE?	17
CHAPTER TWO: Causes and Prophylaxis of HOAs	
Corneal Asphericity	18
Magnitude of Refractive Correction	18
Decentration of Ablation	22
Pupil Centroid Shift, Torsional Misalignment And	
Iris Tilting Fractional Clearance (FC)	29
Fractional Clearance (FC) How to Avoid Such Errors	36
Intraocular Lenses	38 47
Theoretical Benefits and Drawbacks of Aspheric IOLs.	48
Aspheric Vs Spheric IOLs	<i>50</i>
Relationship of Depth of Field to Image Quality	<i>55</i>

IOL Choice	56
CHAPTER THREE: Treatment	
Assessment of Ablation Centration Topography guided customized Ablation	61 62
Principle of Topography guided ablation algorithm	65
Summary	69
References	75
Arabic Summary	

List of Figures

Fig. No.	Title	page
1.1	Spherical aberration. A perfect lens (top) focuses all incoming	
	rays to a point on the Optical axis. In spherical aberration	
	(Bottom) peripheral rays are focused more tightly than	
	central rays	12
2.1	Significant correlation between the amount of achieved	
	myopic correction and surgically induced changes in comalike	
	aberration for a 3-mm pupil. (Pearson correlation coefficient)	20
2.2	Significant correlation between the amount of achieved	
	myopic correction and surgically induced changes in	
	spherical-like aberration for a 3-mm pupil. (Pearson	
	correlation coefficient)	20
2.3	Significant correlation between the amount of achieved	
	myopic correction and surgically induced changes in comalike	
	aberration for a 6-mm pupil. (Pearson correlation coefficient)	21
2.4	Significant correlation between the amount of achieved	
	myopic correction and surgically induced changes in	
	spherical-like aberration for a 6-mm pupil. (Pearson	
	correlation coefficient)	21
2.5	Mrochen) Calculated root-mean wavefront errors S3 (coma-	
	like aberrations, squares) and S4 (spherical aberrations,	
	circles) as a function of the decentration. The root-mean	
	wavefront error was calculated for an eccentric myopic	
	ablation of –6.0 D and an ablation zone of 6.0 mm. The angle	20
2.5	of the displacement was 45 degrees	28
2.6	Mrochen) Mean Zernike coefficients preoperatively and	
	postoperatively. The Zernike coefficients <i>C7</i> and <i>C8</i> for coma-	
	like aberrations and C10, C12, and C14 for the spherical	
	aberrations are significantly different than the preoperative	
	values. The gray bars represent the preoperative Zernike	
	coefficients, and the black bars are the PRK-induced change	20
2.7	in the coefficient	28
2.7	(Porter) Images illustrating the change in pupil center location	
	and iris shape from a natural undilated state to a dilated state	30
	in (A) one patient's right eye and (B) a different patient's left	30

Fig. No.	Title	page
	eye. Superior, nasal, and inferior directions are noted on the	
	figure. White and gray filled circles denote limbus and pupil	
	centers, respectively. Irises tended to thin more in the	
	inferonasal direction than in the superotemporal direction.	
	Pupil centers tended to shift in the inferonasal direction with	
	dilation	
2.8	(Asano-Kato). Direction and degree of iris tilt: eyes with irises	
	tilting temporally (1839 eyes [80.7%], 925 right and 914 left)	
	were more frequently observed than irises tilting nasally (441	
	eyes [19.3%]; 215 right and 226 left)	36
2.9	(Buhren) Schematic graph shows the percentage changes in	
	HOA induction independent of FC	37
2.10	(Khalifa) Postoperative UCVA at 3 months (efficacy)	40
2.11	(Khalifa) Postoperative BSCVA at 3 months (safety)	41
2.12	(Khalifa) Predictability of the spherical refraction at 3 months	41
2.13	(Khalifa) Predictability of the cylindrical refraction at 3	
	months	42
2.14	(Khalifa) Scotopic contrast sensitivity changes in the 3 groups	43
2.15	(Prakash). Scattergram of attempted versus achieved refraction	
	at 6 months The solid line denotes that the attempted and	
	achieved refraction were the same. The dashed black lines	
	represent a limit of difference of ±1.00 D	46
2.16a	(Rocha) Spherical lenses have a constant curvature, as they	
	are derived from spheres, which results in peripheral light	
	rays being defocused	51
2.16b	Aspheric lenses have a variable curvature, but the lens power	
	is constant at all points, resulting in equal focus of all light	
	rays	51
2.17	When we compare the three classes of IOLs, we see that the	
	best image quality comes with the least amount of splay at the	
	focal point; however, this lessens the depth of field	52
2.18	(Nanavaty) Mesopic contrast sensitivity at 6 months (* =	
	P≤.05)	53
2.19	(Nanavaty). Mean distance-corrected near acuity logMAR at 1	_
	year	53
2.20	(Devgan) Depth of field is inversely related to the image	
	quality with respect to spherical aberration	55

Fig. No.	Title	page
2.21	(Devgan) Simplified decision tree for IOL selection. Actual IOL	
	selection depends on many factors	60
3.1 a,b	(Hafezi). Preoperative and postoperative corneal	
	topographies (axial representation) and the difference map.	
	The preoperative topography shows the SCI (A), whereas 1	
	day after surgery the SCI has disappeared (B). The difference	
	power map of preoperative versus postoperative status	
	shows that ablation occurred (C)	66
3.2	Standard and customized treatment strategies for the	
	correction of SCIs. In previous studies, either PTK (A) or PRK	
	(B) ablation modes were used in combination to assess a SCI's	
	height by Munnerlyn's formula. Owing to the nature of the	
	ablation algorithms, neither a PTK (A, top-hat) nor a PRK (B,	
	parabolic) algorithm fully correct for the CSI, whereas the	
	new customized algorithm (C) provides full CSI correction	68

List of Tables

Tab. No.	Title	page
1.1	List of Zernike's Polynomials (Thibos)	9
1.2	correlation coefficient and 95% confidence interval of	
	manifest refraction and cycloplejic refraction with wavefront	
	refraction in post-LASIK eyes. <i>(Chalita)</i>	14
1.3	(Chalita) Odds Ratios and P Values of Generalized Estimating	
	Equations Model to Assess Association between Symptoms	
	and Higher Order Aberrations for a 5-mm Pupil Size in Post-	
	LASIK Eyes	15
2.1	(Porter) The mean magnitude and direction of the vector shift	
	in pupil center location in different conditions as reported in	
	previous studies	31
2.2	(Asano-Kato) Anatomic variation of tilting angle of the iris	35
2.3	(Khalifa) Higher-order aberration changes between	
	preoperatively and postoperatively	42
2.4	(Montes) Main characteristic of selected aspheric IOLs	56
3.1	(Lin) Pre-C-CAP and post-C-CAP total RMS and higher-order	
	RMS for all eyes with available wavefront analysis (n = 5)	
	(VisxWavePrint)	64

List of Abbreviations

HOAs	high order aberrations
RK	radial keratotomy
PRK	photorefractive keratectomy
LASIK	laser in situ keratomileusis
HCVA	high contrast visual acuity
LCVA	low contrast visual acuity
GVA	glare visual acuity
RMS	root mean square
BSCVA	best spectacle corrected visual acuity
FC	fractional clearance
OZ	optical zone
PD	pupillary diameter
IR	iris registration
UCVA	uncorrected visual acuity
LOAs	lower order aberrations
D	Diopter
SE	spherical equivalent
UDVA	uncorrected distance visual acuity
IOL	intraocular lens
BCVA	best corrected visual acuity
C-CAP	custom contoured ablation profile
T-CAT	topography custom ablation treatment
HDE	humanitarian-use device exemption
HUD	Humanitarian-use device
SCI	steep central island

CHAPTER ONE

Introduction

Causes and Sources of Vision Blurring In The Human Eve:

The human eye can be described as a compound lens system consisting of 3 main components: the cornea, the pupil, and the crystalline lens. The cornea (or better, the first corneal surface; that is, the cornea including the tear film) is the first optics of the eye and the dominating structure in the optical power of the eye (mean approximately 70%). Accordingly, it is the main contributor to aberrations in the eye. The anterior cornea has a prolate profile; that is, the central region is steeper than the periphery. This shape helps reduce the amount of spherical aberration in the whole eye. However, corneal shapes vary significantly between individuals and give rise to astigmatism and higher order asymmetrical aberrations.

The second component, the pupil, regulates the aperture of the eye's image system, influencing the amount of light that reaches the retina. As in any optical system, the size of the pupil has important consequences for image formation. A smaller pupil increases the depth of focus and minimizes the effects of higherorder aberrations (HOAs) by reducing the size of the blur circle onto the retina, although down to approximately 2.3 mm diameter, then diffraction begins to increase the blur circle and the effect of diffraction (*Holladay et al,1991*). To the contrary, the magnitude of aberrations increases with pupil dilation (*Thibos et al, 2002*), leading to a decrease in visual performance and optical quality of the retinal image.

The human eye is affected by aberrations that degrade the retinal image and ultimately limit spatial vision (*Artal et al, 2001*). The lower order aberrations, defocus and astigmatism, are corrected routinely with spectacles, contact lenses, intraocular lenses, and refractive surgery. The higher order aberrations, beyond defocus and astigmatism, have been known to exist in the eye for more than 150 years (*Helmholtz and von, 1881*).

The neural visual system is adapted to the eye's particular aberrations, so that edges appear sharp despite the modest blur in the normal retinal image. Moreover, the neural visual system adapts to prismatic distortions, contrast or blur (*Webster et al*, 2002). Adaptation to blurred images can also improve letter acuity (*Williams et al*, 1998).

In normal population the dominant aberrations are the ordinary second-order spherocylindrical focus errors. Higher order aberrations are a relatively small component, comprising about 10% of the eye's total aberrations (*Lawless and Hodge*,2005).

HOAs increase with age and mirror symmetry exists between the right and the left eyes (*Charman*,2005).

Several studies have reported a compensation of the aberration of the cornea by the aberration of the crystalline lens. The spherical aberration of the cornea is usually positive whereas the young crystalline lens exhibits a negative spherical aberration. Besides, there is strong evidence of compensation for aberrations between the cornea and intraocular optics in cases of astigmatism (horizontal/vertical) and horizontal coma. The balance of corneal and internal aberrations is a typical example of creating two coupling optical systems (*Marco and Giuseppe,2010*).

Corneal refractive surgery, such as radial keratotomy (RK), photorefractive keratectomy (PRK), and laser keratomileusis (LASIK), is designed to modify the curvature of the central cornea, reducing it for the correction of myopia. In general, these surgeries produce a non-physiologic, oblate-shaped cornea with a flat central area and increasing power toward the periphery. This might influence the optical quality of the cornea, as well as the quality of the retinal image (Applegate et al, 1996). Previous studies have indicated that higher order aberrations of the cornea increase after radial keratotomy PRK and (Schwiegerling and Snyder, 2000). Studies using aberroscopy demonstrated that PRK also increases ocular aberrations of higher order (Seiler et al, 2000).

Most reports of results after PRK and LASIK include measurements of only one quality of vision; high-contrast visual acuity (HCVA), both uncorrected and best spectacle corrected. In fact, the efficacy and safety of the procedureare determined by this parameter. But other qualities of vision, such as low contrast visual acuity (LCVA), glare visual acuity (GVA), and scotopic visual acuity are equally important and are rarely reported after refractive surgery (*Ghaith et al, 1998*).

Till now, when we discuss refractive errors we discuss only spherical and cylindrical correction. But in today's world we have to think of a third parameter that is the aberrations present in the eye which can be anywhere in the optical media. (agrawal et al,2010)

With rapid strides made in wave-front sensing technology and customized ablation, a paradigm shift has occurred in our perception of 'vision'. We now realize that vision is not merely the ability to read the high contrast Snellen's chart, but a composite dynamic specialized function, which varies according to the surroundings, lighting and contrast (*Radhakrish*, 2011).

Based on the recent development of wavefront technology and functional vision tests, some researchers have recognized the relationship between increased wavefront aberration and degradation in visual quality (*Yoon and Williams*, 2002).

Clinical studies also show that laser refractive surgery increases HOAs, mainly spherical and coma (*Miller et al, 2002*).

Several recent studies focused on the correction of wavefront aberrations. After correcting of HOAs, the optical quality and visual quality were improved to varying levels (*Guirao et al*, 2002).

What Is Aberrometry?

Aberrometry is another means to measure optical aberrations or refractive errors. It measures the shape of a wavefront of light that has passed through the eye's optics. Wavefront technology brings our understanding of the eye's refractive characteristics to a new level.

Optical aberrations or refractive errors include myopia, hyperopia, astigmatism and higher order aberrations. The sphere and cylinder are termed lower order aberrations and can easily be corrected by glasses. Other optical aberrations, for instance coma, spherical aberration, trefoil etc., which

are not corrected by traditional spherocylinder lenses are called higher order aberrations. Correction of such optical aberrations improves the optical transfer function and increases the contrast and spatial detail of retinal image. Wavefront guided customized refractive surgery is aimedat correcting higher order aberrations in addition to lower order aberrations (*Radhakrishnan*, 2011).

The quality of an optical system can be specified in three different ways- point spread function, line spread function and wavefront aberration. The third way of specifying optical quality is by measuring the underlying optical aberrations rather than the secondary effect of these aberrations on the image quality. This is a more fundamental approach to the description of optical imperfections in the eye from which secondary measures can be derived (*Thibos et al*, 2002).

Wavefront:

If we have an eye with perfect optical system focused for distance, light from a point source on the retina will form a perfect parallel beam as it leaves the eye. A wavefront is a virtual surface perpendicular to these rays of light (*Panagopoulou and Pallikaris*, 2001).

Wavefront Error/Aberration

Wavefront error is the error between actual wavefront and ideal wavefront typically defined within the area delimited by pupil. A variety of wavefront-sensing or aberrometry devices are available to measure it, which are employed to guide laser ablation during customized refractive surgery (*Mrochen et al*, 2000).

Methods of Wavefront Analysis

The three main technologies used for analyzing wavefronts are Hartmann-Shack aberrometry, Tscherning aberrometry and Laser Ray tracing.

In Hartmann-Shack, the most common type of aberrometer a collimated HeNe laser beam is projected on the retina. The light reflected from the retina is imaged onto a lenselet array and sampled with a charged coupled device chip. An aberrated wavefront passing through this lenselet would produce varying shifts of these spots over their subapertures. The shift gradient of thesespot positions is analyzed which gives an accurate account of wavefront error.

There are two common algorithms for wavefront analyzis: Zernicke polynomials (mathematical functions are used to describe complex shapes) and Fourier analysis (sine waves are used to reconstruct the wavefront).

The normalized Zernicke polynomials, which represents total wavefront error as a series of terms that describe surface shape components with respect to angular and radially arranged basis functions of different frequencies and orders has been popular as the standard method to depict wavefront error (Thibos et al,2002).