CARDIOPROTECTIVE ACTION OF THE TERMINAL WARM BLOOD CARDIOPLEGIA IN ACYANOTIC PEDIATRIC CARDIAC SURGERY

Thesis

Submitted for the Partial Fulfillment of the M.D Degree in Anesthesiology

By

Passaint Mohamed Hassan

(M.B. Bch., MSc. Anesthesiology)
Under the Supervision of

Prof. Dr. Mohamed Sayed Osman

Professor of Anesthesiology

Dr. Ikram Abd Allah

Professor of Anesthesiology

Dr. Iman Atef Mandour

Assistant Professor of Chemical pathology

DR. Dalia Saad

Lecturer of Anesthesiology

Faculty of Medicine-Cairo University

Acknowledgment

First of all I am thankful and grateful to GOD the kind and merciful for helping me throughout this work.

I am greatly appreciative to *Prof. Dr. Mohamed Osman* Professor of anesthesiology, Faculty of medicine, Cairo University, for her great help, guidance and encouragement.

Many thanks to *Prof. Dr. Ikram Abd Allah* Professor of anesthesiology, Faculty of medicine, Cairo University, for her great support and excellent supervision.

I am grateful to *Dr. Dalia Saad* lectures of anesthesiology, Faculty of medicine, Cairo University, for her assistance and effort.

I would like to thank *Dr. Iman Mandor*, Assistant professor of chemical pathology, faculty of medecine, Cairo University, for supervising this work and co-operation.

I am very grateful for the support help and encouragement of my family and husband many thanks goes to every one of them.

List of contents

Abstract	I
List of abbreviations	II
List of figures	III
List of tables	IV
Introduction	1
Review of literature	
Pathophysiological Classification of Congenital Heart	
Diseases	3
The pediatric myocardium differences	13
Myocardial Metabolic Changes During Pediatric Cardio	
Pulmonary Bypass	24
Pediatric myocardial protection	36
Material and methods	
Results	62
Discussion	89
Summary	99
References	101
Arabic summary	

Abstract

Background

The surgical management of children with CHD has been advanced significantly in the past decade. Advances in unders tanding of the mechanisms of myocardial injury so, many strategies for myocardial preservation are based on decreasing myocardial metabolic rate by temperature manipulation and arrest of electromechanical activity.

Recent studies suggest the effect of Terminal warm blood cardioplegic in decreasing oxidative stress and free radical release with reperfusion.

Material and Methods

Forty patients undergoing congenital heart surgery disease were randomly divided into 2 groups TWBC and control group and each subdivided into two groups infants and children haemodynamics parameters were measured lactate and arterial blood gases are measured before and after by pass, Also Troponin I.

Results:

There was a significant less increase in lactate level and Troponin level of in children receiving TWBC than children of control group. There was a significant less increase in lactate level in infants receiving TWBC than infants of control group but a significant high increase in Troponin level in infants in TWBC group than infants in control group.

conclusion

TWBC has protective effects in children and adolescents as it does in adults. But still, there are some precautions in using TWBC in infants.

Key words: Terminal warm blood cardioplegia, congenital cardiac surgery, pediatric

List of abbreviations

CHD Congenital heart disease

CNS Central nervous system

CVS Cardiovascular system

ASD atrial septal defect

VSD Ventricular septal defect

AVC artrioventricular canal

PVR Pulmonary Vascular resistance

PBF Pulmonary blood flow

PGE₁ Prostaglandin E₁

PDA Patent ductus Arteriosus

RVOT Right Ventricular outflow tract

DORV double outlet right Ventricle

UVH Univententricular heart

RV Right Ventricle

CHF Congenital heart failure

FFA Free Fatty Acid

ATP Adenosine Triphosphate

LV Left ventricle

PAP Pulmonary artery Pressure

LAP Left atrial pressure

SVR Systemic Vascular resistance

CO Cardiac output

HR heart rate

CVP Central Venous Pressure

CAD Coronary artery Disease

CPB Cardiopulmonary bypass

TCA Total circulatory arrest

DHCA deep hypothermic circulatory arrest

CMR Cerebral metabolic rate

MHCPB Moderate hypothermic cardio pulmonary bypass

CVR Cerebral vascular resistance

 β ARS β adrenergic receptors

ECMO Extracarporeal membrane oxygenator

CPO Citrate phosphate dextrose

KCl Potassium chloride

N.S Normal Saline

Tham tromethamine

IV intravenous

MAC minimal alveolar concentration

ACT Activating Clotting time

R⁺ Potassium

My Magnesium

NaHcoz Borluim bicarbonate

TWBC terminal warm blood cardiopegia

ICV intensive care unit

BP blood pressure

TWBCP terminal warm blood cardioprotection

TNI troponin I

List of Tables

Table (1)	Differences between adult and pediatric CPB.	25
Table (2)	recommended pump flow rates for CPD in	
	children.	27
Table (3)	Phases of Myocardial Protection and some clinical	
	strategies to improve myocardial function.	38
Table (4)	Cardioplegia composition.	47
Table (5)	Guidelines for reperfusion solutions based on	
	initial arresting solutions.	50
Table (6)	Cardioplegia components	58
Table (7)	demographic data.	62
Table (8)	operative data.	62
Table (9)	Values mean blood pressure. Among the study	
	groups.	63
Table (10)	values of central venous pressure among the study	
	groups.	65
Table (11)	values of heart rate among the study groups.	66
Table (12)	values of arterial blood gases among the study	
	groups.	68
Table (13)	Lactate level among infants receiving TWBC and	
	infants receiving cold blood cardioplegia.	70
Table (14)	Lactate level among children receiving terminal	
	warm blood cardioplegia and children of control	
	group.	71
Table (15)	Lactate level among infants receiving TWBC and	
	children receiving TWBC.	72

Table (16)	Lactate level among children and infants receiving	
	cold blood cardioplegia.	74
Table (17)	troponin level among infants in TWBC and control	
	groups.	75
Table (18)	values of troponin level of children in TWBC	
	group and control group.	77
Table (19)	troponin level among infants and children	
	receiving TWBC.	80
Table (20)	troponin level among infants and children receving	
	cold blood cardioplegia.	82
Table (21)	Comparison between use of inotropes among	
	TWBC and control groups.	84
Table (22)	Comparison between use of vasodilators among	
	TWBC and control group.	85
Table (23)	Comparison use of pacing among TWBC and	
	control group.	86
Table (24)	Comparison between ICU stay among TWBC and	
	control group.	86
Table (25)	Comparison between duration of ventilation	
	among TWRC and control group.	87

List of figures

Figure (1)	Values of bypass time and ischaemic time among	
	the study group.	63
Figure (2)	values of invasive arterial blood pressure among	
	the study groups.	64
Figure (3)	values of central venous pressure among the study	
	groups.	65
Figure (4)	values of heart rate among the study groups.	67
Figure (5)	arterial blood gases among the study groups.	69
Figure (6)	level of lactate among infants receiving TWBC and	
	infants receiving cold blood cardioplegia.	7 0
Lactate (7)	Lactate level among children TWBC and children	
	of control group.	7 1
Figure (8)	Lactate level among infants receiving TWBC and	
	children receiving TWBC.	73
Figure (9)	Lactate level among infants and children receiving	
	cold blood cardioplegia.	74
Figure (10)	values of troponin level among infants in TWBC	
	group and control group.	76
Figure (11)	troponin level among children in TWBC and	
	control groups.	78
Figure (12)	troponin level among infants and children	
	receiving TWBC.	81
Figure (13)	troponin level among infants and children	
	receiving clold blood cardioplegia.	83
Figure (14)	Comparison between use of inotropes among	
	TWBC and control group.	84

Figure (15)	Comparison between use of vasodilators among	
	TWBC and control group.	85
Figure (16)	Comparison between ICU among TWBC and	
	control group.	87
Figure (17)	Comparison between duration of ventilation	
	among TWBC and control groups.	88

Introduction

The surgical management of children with congenital heart disease (CHD) has been advanced significantly in the past decade.

Congenital heart defects in children are repaired at younger ages and with more definitive operative strategies rather than palliations are pursued. Improved outcome of surgery for (CHD) depends on identifying patients vulnerable to organ failure, modifying the preoperative and intraoperative risk factors, and effective interventions for cardiac preservation during surgery for (CHD). (*Brown et al.*, 2003).

Advances in the understanding of the mechanisms of myocardial injury and the composition, delivery and the conduct of myocardial preservation are integral parts of improved outcome.

Strategies for myocardial preservation are based on methods that decrease myocardial metabolic rate by temperature manipulation and arrest of electromechanical activity using various modification of cardioplegic solution (*Doenst et al.*, 2003) and (*Cecer, et al.*, 2002).

Cold blood carioplegia (6-8C°) decreases lactate release and preserves adenine nucleotides (ATP and ADP), (Ascione et al., 2002).

Blood has become the preferred vehicle for cardioplegia in adults and children (*Inhnken et al.*, 1995). It is assumed that oxygen carried by hemoglobin provides additional protection during ischemia.

Blood cardioplegia provides catalase in red blood cells increasing the free radical scavenging capacity and providing buffering capacity by histidine and other blood proteins. (*Allen et al.*, 2001)

In the neonate exposed to hypoxic stress and reoxygenation injury, blood cardioplegia facilitates the repair of injured myocardium, replenishes depleted energy stores and protects against further damage. (Allen et al., 2001)

Infants undergoing repair of ventricular septal defects were strudied using blood or crystalloid cardioplegia. Blood cardioplegia maintained myocardial adenine nucleotides, decreased lactate production and lowered troponin I by 42% compared to crystalloid cardioplegia. (*Caputo et al.*, 2002)

The use of terminal warm blood cardioplegia before removing the aortic crossclamp after cold blood cardioplegia may decreases the oxidative stress and free radical release with reperfusion. The effect of terminal warm cardioplegia on improvement spontaneous defibrillation rate, increased lactate, decreased troponin I release comparing to cold blood cardioplegia. (*Yodya et al.*, 2003)

Aim of the work

This study will compare the protective effect of cold blood cardioplegia with cold blood cardioplegia followed by terminal warm blood cardioplegia in pediatric patients younger than 4 years for surgical repair of acyanotic congenital defects.

Pathophysiological Classification of Congenital Heart Diseases

A decade ago the preferred approach to the infant with congenital heart diseases was palliation in infancy and repair later in childhood.

Today the tendency is to repair congenital cardiac lesions as early as possible, preferably in the neonatal period. (*Maureen et al.*, 1999)

The important philosophical change in the operative management of neonate with CHD stems from the recognition that:

- (1) Early repair is safe and feasible.
- (2) Considerable portion of the myocardial, pulmonary and CNS damage related to CHD is specifically due to prolonged exposure to abnormal blood flow patterns, hypoxia and cyanosis.
- (3) An increase in morbidity and mortality is associated with longterm medical management of congenital cardiac patients.

Therefore, the goal of early surgical intervention is to restore normal blood flow patterns where possible and reduce long term morbidity. (*Maureen et al.*, 1999)

The marked spectrum of intra-cardiac shunts complicates the anesthetic approach to patients with CHD. Moreover, myocardial changes result from the hemodynamic stress and increased cardiac work incurred by these defects. (*Rothstein et al.*, 1999)

The anesthesiologist must not only understand the anatomy but also its hemodynamic and functional consequences on the CVS. Although an isolated heart defect may be identified, the entire cardiopulmonary system is usually affected (*Rothstein et al.*, 1999).

The developmental biology of the heart is a large field of study. Formation of the heart tube, looping, septation, and resultant systemic and pulmonary circulations is a complex process. Disruption at any point during primary morphogenesis results in the large spectrum of congenital heart defects being treated today. Genetic disorders responsible for these alterations can be classified into 3 types: chromosomal disorders, singlegene disorders, and polygenic disorders. (*Clark et al.*,2004).

Common congenital heart defects

I- simple left to right shunts (acyanotic lesions with increased pulmonary blood flow)

- 1- Patent ductus arteriosus.
- 2- Atrial septal defect (ASD).
- 3- Venricular septal defects (VSD).
- 4- Endocardial cushion defect (AV canal).
- 5- Aorto-pulmonary window.

II- Pure obstructive lesions

- 1- Pulmonary stenosis.
- 2- Mitral stenosis.
- 3- Aortic stenosis.
- 4- Coarctation of the aorta.

III- Right to left shunts (cyanotic defects with decreased Pulmonary blood flow.

- A- Teratology of Fallot
- B- Pulmonary Atresia with Ventricular Septal Defect
- C- Pulmonary Atresia with Intact Ventricular Septum
- D- Tricuspid Atresia

IV- Complex Cyanotic Defects (Mixing Lesion)

- A- Double Outlet Right Ventricle (DORV)
- B- Univentricular Heart (Single Ventricle)
- C- Transposition of the Great Arteries
- D- Total Anomalous Pulmonary Venous Drainage
- E- Truncus Arteriosus
- F- Hypoplastic Left Heart Syndrome

I- simple left to right shunts (acyanotic lesions with increased pulmonary blood flow)

Left to right shunts result from a communication between the right and the left sided circulations. Flow across these defects is usually from the high resistance circuit (left side) to the low resistance circuit (right side). The amount of PBF is determined by the size of the defect and the ratio of the resistances down-stream the defect. (*Hickey et al, 1989*)

Restrictive shunts are characterized by a significant pressure gradient across the defect. Flow across these small shunts is dictated to the size of the defect.

Non restrictive shunts are larger in size and therefore exhibit minimal pressure gradient across the defect. Flow is determined mainly by the ratio of the pulmonary vascular resistance (PVR) to the systemic vascular resistance (PVR). For example a high PVR would lessen the degree of left to right shunting. Nonrestrictive shunts generally produce excessive PBF, leading to pulmonary vascular congestion. (*Hickey et al*, 1989).

Surgery is generally indicated for symptoms, pulmonary hypertension, cardiomegaly, left ventricular volume overload or strain or a calculated left to right shunt (the ratio of pulmonary to systemic blood