Extracorporeal Membrane Oxygenation as an Alternative to Ventilation

Essay

Submitted for Partial Fulfillment of Master Degree in Anaesthesiology

Presented by Rofayda Yaser Elsayed Gad

M.B,B.Ch Faculty of Medicine Ain Shams University

Under Supervision of

Prof. Dr. Samia Ibrahim Sharaf

Professor of Anaesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Amr Mohammed Abdelfattah

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Dr. Mohammed Sayed Shorbagy

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University

2015

Acknowledgement

First and foremost, thanks to **Allah**, the Most Gracious and the Most Merciful.

I would like to express my true and deep gratitude for **Prof. Dr. Samia Ibrahim Sharaf**, Professor of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her precious help and beneficial advices throughout this thesis. It has been a great honor to work under her supervision and to accept me to be one of her students.

Words stand short to express my deep appreciation for **Dr. Amr Mohammed Abdelfattah**, Assistant Professor of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, who kindly helped me a lot in this thesis and for his sincere guidance and remarkable thoughts.

I am so grateful to **Dr. Mohammed Sayed Shorhayy**, Lecturer of Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, he patiently gave me much of his time, experience, knowledge and support that cannot be expressed by words.

Finally, many thanks for my family for their continuous help, support and encouragement.

🗷 Rofayda Yaser Elsayed

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Chapter (1): Extracorporeal Membrane Oxygenation	5
Chapter (2): Extracorporeal Membrane Oxygenation in Adults	36
Chapter (3): ECMO in Neonates	55
Chapter (4): Complications of ECMO	68
Summary	79
References	80
Arabic Summary	——

List of Abbreviations

ALI : Acute lung injury

ARDS : Adult respiratory distress syndrome

BIPAP: Biphasic positive airways pressure

CESAR : Conventional Ventilation or ECMO for

Severe Adult Respiratory Failure

ECMO : Extracorporeal membrane oxygenation

ELSO : Extracorporeal Life Support Organization

FIO₂: Fraction of inspired oxygen

HFOV: High-frequency oscillatory ventilation

ICU : Intensive care unit

INO : Inhaled nitric oxide

LV : Left ventricle

MAP : Mean airway pressure

mSvO₂ : Mixed venous oxygen saturation

OI : Oxygenation index

PA : Pulmonary artery

PaO₂ : Oxygen tension (partial pressures) of arterial blood

PEEP: Peak end expiratory pressure

PIP : Peak inspiratory pressure

PMP : Polymethylpentene

PPHN: Persistent pulmonary hypertension of the newborn

PVR : Pulmonary vascular resistance

RA : Right atrium

List of Abbreviations (Cont.)

RCT: Randomized controlled trial

RPM: Revolutions per minute

RR : Respiratory rate

VA : Veno-arterial

VAV : Veno-arterial-venous

VI : Ventilation Index

VILI : Ventilator-induced lung injury

VV : Veno-venous

List of Tables

Cable V	lo. Eitle Page No.
Table (1):	Differences between veno-arterial and veno- venous extracorporeal membrane oxygenation24
Table (2):	Factors increasing oxygenation in venous—arterial extracorporeal membrane oxygenation 26
Table (3):	Factors increasing oxygenation on venovenous extracorporeal membrane oxygenation:
Table (4):	Indications for conversion from veno-venous to veno-arterial-venous or veno-arterial extracorporeal membrane oxygenation
Table (5):	O ₂ exchange (blood flow variables)
Table (6):	Factors affecting the CO ₂ removal in a membrane lung
Table (7):	Comparison of lung and artificial oxygenator lung 34
Table (8):	Extracorporeal membrane oxygenation indication indices for >80% predicted mortality 50
Table (9):	Neonatal Inclusion/Exclusion Criteria 67

List of Figures

Figure No	v. Eitle Page No.
Figure (1):	ECMO circuit
Figure (2):	A traditional extracorporeal membrane oxygenation system
Figure (3):	Roller Pump8
Figure (4):	Centrifugal pump9
Figure (5):	Single lumen cannula
Figure (6):	Double lumen cannula
Figure (7):	Three configurations of extracorporeal blood flow (a) single-site double lumen veno-venous (VV), (b) two-site VV, and (c) veno-arterial
Figure (8):	V-A cannulation and V-V cannulation 23
Figure (9):	A patient ambulating on extracorporeal membrane oxygenation while being bridged to lung transplantation

Introduction

adaptation of conventional cardiopulmonary bypass techniques to provide cardiopulmonary support. ECMO provides physiologic cardiopulmonary support to aid reversible aspects of the disease process and to allow recovery. ECMO does not provide treatment of the underlying disease. The indications for ECMO support have expanded from acute respiratory failure to acute cardiac failure refractory to conventional treatments from wide patient subsets involving neonates to adults (*Chauhan and Subin*, 2011).

In May 1953, Gibbon used artificial oxygenation and perfusion support for the first successful open heart operation. In 1954, Lillehei developed the cross-circulation technique by using slightly anesthetized adult volunteers as live cardiopulmonary bypass apparatuses during the repair of certain congenital cardiac disorders (*Lowry et al.*, *2013*).

In 1955, at the Mayo Clinic, Kirklin improved on Gibbon's device and successfully repaired an atrial septal defect (*Wolfson*, 2003).

In 1965, Rashkind and coworkers were the first to use a bubble oxygenator as support in a neonate dying of respiratory failure (*Bartlett and Esperanza*, 1985).

In 1969, Dorson and colleagues reported the use of a membrane oxygenator for cardiopulmonary bypass in infants (*Alpard et al.*, 2002).

In 1970, Baffes et al reported the successful use of extracorporeal membrane oxygenation as support in infants with congenital heart defects who were undergoing cardiac surgery. In 1975, Bartlett were the first to successfully use ECMO in neonates with severe respiratory distress (*Peek and Sanowski*, 1997).

Since its introduction, ECMO has become a mainstay in the management of neonatal and pediatric patients with refractory respiratory and/or cardiac failure secondary to a wide range of diagnoses, including meconium aspiration, pulmonary hypertension, pneumonia, myocarditis, cardiomyopathy, sepsis, and ARDS (*Turner and Cheifetz*, 2013).

Currently, results imply that ECMO is superior to conventional ventilation providing lung rest. There is expansion in the indications for ECMO including a bridge to lung transplantation, the use of ECMO in awake patients, liver transplantation, as well as in adult respiratory distress syndrome (Malagon and Donna Greenhalgh, 2013).

There is limited understanding of the long-term impact of ECMO on quality of life and long-term cognitive and physical functioning for many groups, especially the cardiac and pediatric populations. This deserves further study (*Mehta and Laura*, 2013).

Aim of the Work

This work aims to review the current medical literature about extracorporeal membrane oxygenation (ECMO), its application in neonates and adults as an alternative for ventilation, its indications contraindications, technical details and complications.

Chapter (1) Extracorporeal Membrane Oxygenation

xtracorporeal membrane oxygenation (ECMO) is a modified adaptation of conventional cardiopulmonary bypass techniques for prolonged cardiopulmonary support using intrathoracic or extrathoracic cannulation. ECMO is currently used at specialized centers to support patients with respiratory or cardiac failure who are unresponsive to conventional therapeutic interventions (*Butt and Maclaren*, 2013).

ECMO Circuit Design:

A standard ECMO circuit consists of Fig (1):

- 1- Mechanical blood pump,
- 2- Gas exchange device (membrane oxygenator),
- 3- Heat exchanger,
- 4- Circuit tubing:all components of ECMO connected together with circuit tubing between the venous access cannula and either the arterial (VA) or venous (VV) infusion cannula
- 5- Monitors

(McMullan et al., 2011).

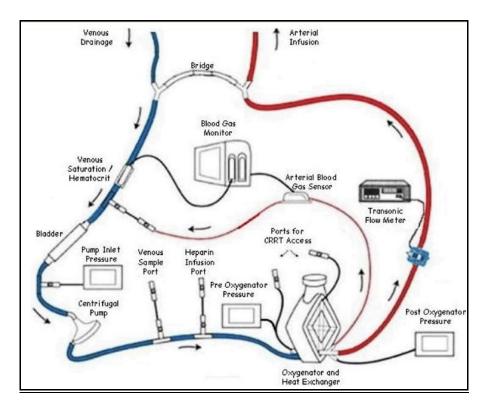


Figure (1): ECMO circuit (McMullan et al., 2011).

Figure (2): A traditional extracorporeal membrane oxygenation system *(Turner and Cheifetz, 2013).*

1- Pumps:

A pump is an essential component of the ECMO circuit, there are two types of pumps roller pumps and centrifugal pumps.

a-Roller pumps:

Semiocclusive roller pumps have been the standard for decades, but have mainly been replaced by novel centrifugal pumps (*Walfson et al, 2003*).

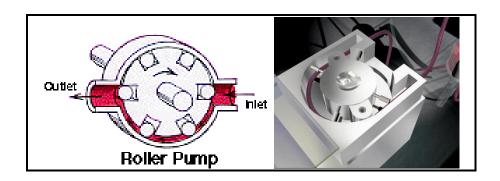


Figure (3): Roller Pump (Walfson et al, 2003).

Problem with roller pumps:

They could generate direct suction on the venous catheter. In practice, this problem is avoided by the inclusion of a small collapsible bladder positioned at the lowest point of the venous line. The bladder (or a transducer directly in the venous line) is attached to an electrical switch that slows or stops the roller pump when a threshold suction is reached, then restarts the pump instantly when the filling pressure exceeds the pump suction (i.e., the venous drainage flow exceeds the pump flow). The suction on the venous cannula