Ain Shams University
Faculty of Medicine
Department of anesthesia and intensive care medicine

Invasive Monitoring in Intensive care unit

An Essay

Submitted for the Partial Fulfillment of Master Degree in intensive care medicine

Presented by

Ahmed Abdallah Sayed

M.B., B.CH

Under supervision of

Prof. Dr: Mohammed Saeed Abdel Aziz

Professor of Anesthesia and Intensive care Faculty of Medicine – Ain Shams University

Assistant Prof. Dr: Manal Mohammed Kamal

Assistant Professor of Anesthesia and Intensive care Faculty of Medicine – Ain Shams University

Dr: George Mikhail Khalil

Lecturer of Anesthesia and Intensive care Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2015

بِسْمِ اللَّهِ الرّحمَٰنِ الرّحيمِ

الَّبْتِ إِبْمَهُنِيَ عَلَيْهِ فَعَلَى قَالِحَيُّ […رَبِّ اَقُرْعَنْتِ عَلَيْ وَعَلَى وَالْحَيَّ

> [सिंची|क्ता] (व्यांक्र क्षं व्यांक्त्यों क्षंगुंक् व्यांक्त्यों क्षंगुंक् व्यांक्षंगुं

> > صدق الله العظيم

النمل. اية رقم ١٩

Acknowledgement

First of all, my great thanks for **ALLAH**, the Most Merciful, the Most Gracious, for giving me courage, health and patience to undertake and accomplish this essay and for all his blesses on me in my life.

I would like to express my deepest thanks, gratitude and respect to my great **Prof. Dr. Mohammed Saeed Abdel Aziz,** Professor of Anesthesia and Intensive Care, Faculty of Medicine – Ain Shams University, for his advices, creative ideas, his constant supervision and support throughout the performance of this work. I had the honor to complete this work under his supervision.

Words fail to express my profound thanks and sincere gratitude to Ass. Prof. Dr. Manal Mohammed Kamal, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine – Ain Shams University, for her generous supervision, continuous encouragement, unlimited help and continuous guidance throughout this work.

I can't forget to thank with all appreciation **Dr. George**Mikhail Khalil, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine – Ain Shams University, for his great efforts and time he has devoted for this work.

Finally, I will never forget the sincere encouragement and great help of my **FAMILY** throughout my life journey.

Contents

Subject	Page No.
List of Abbre	viationsi
List of Tables	iii
List of Figure	esiv
Introduction	1
Aim of the St	udy4
Chapter (1):	Types of Invasive Monitoring in ICU 5
Chapter (2):	Indications, Contraindications, Advantages and Disadvantages of Invasive Monitoring in ICU10
Chapter (3):	Intracranial Pressure Monitoring 16
Chapter (4):	Central Venous Pressure Monitoring 48
Chapter (5):	Pulmonary Artery catheter89
Chapter (6):	Direct Arterial Blood Pressure Monitoring119
Summary and	d Conclusion 156
References	
Arabic Sumn	nary—

List of Abbreviations

Abbrev. Full term

ABI : Acquired brain injury **ABP** : Arterial blood pressure

ARDS : Acute respiratory distress syndrome **ASA** : American society of anesthesiology

BNP : Beta natriuretic peptide

BP : Blood pressure

cICC : Continuous intracranial compliance

CO : Cardiac out put

CPP : Cerebral perfusion pressure

CRBSIs : Catheter related blood stream infections

CSF : Cerebrospinal fluid

CT : Computerized tomographyCVC : Central venous catheterCVL : Central venous line

CVP : Central venous pressure

CXR : Chest X ray

DAI : Diffuse axonal injury
EDV : End diastolic volume
EKG : Electrocardiogram
ETT : Endotracheal tube

EVD : External ventricular drainage

GCS : Glasgow coma scale

GOS : Glasgow outcome score scale

ICH : Intra cranial hemorrhage
 ICP : Intracranial pressure
 ICU : Intensive care unit
 IJ : Internal jugular
 IJV : Internal jugular vein

IVC : Inferior vena cava

List of Abbreviations (Cont.)

Full term

LA : Left atrium

Abbrev.

LBBB : Left bundle branch block
LIJ : Left internal jugular

LV : Left ventricle

MABP : Mean arterial blood pressure

mL : Milli litre mm : Millimeter

mmHg : Millimeter mercury

MRI : Magnetic resonance imaging

PA : Pulmonary artery

PAC: Pulmonary artery catheter

PAOP : Pulmonary artery occlusion pressure

PCo2 : Carbon dioxide pressure

PCWP : Pulmonary capillary wedge pressure PEEP : Positive end expiratory pressure Ppa : Pulmonary arterial pressure

Ppao : Pulmonary artery occlusion pressure
 PVCs : Premature ventricular contractions
 PVR : Pulmonary vascular resistance

RA : Right atrium

RHC : Right heart catheterization RIJ : Right internal jugular

RV : Right ventricle SA : Sinoatrial node

Sao2 : Arterial oxygen saturation

ScVO2 : Central venous oxygen saturation

SVC : Superior vena cava

Svo2 : Mixed venous oxygen saturation

TBI : traumatic brain injury **VT** : Ventricular tachycardia

List of Tables

Table No	. Title	Page No.
Table (1):	Comparison of microtransduce monitoring devices	
Table (2):	Frequency of mechanical compaccording to routes of catheter inser	
Table (3):	Circulatory Pressures	115
Table (4):	Complications following radial cannulation	~
Table (5):	Complication following femoral cannulation	•
Table (6):	Complications following axillary cannulation	•

List of Figures

Figure No	e. Title	Page No.
Figure (1):	The volume / pressure curve	5
Figure (2):	Cardiac output/right atrial pressure	e curve 7
Figure (3):	Cerebral blood flow/ arterial Pco2	20
Figure (4):	C.T. brain of a young Fig (4b) C.7 of an old	
Figure (5):	Central venous pressure/volume co	ırve49
Figure (6):	Jugular tracing waves	51
Figure (7):	Trendelenburg position for peapproach of internal jugular	
Figure (8):	Anatomy of internal jugular vein	70
Figure (9):	Anatomy of femoral vein	79
Figure (10):	Anatomy of radial artery	133
Figure (11):	Anatomy of femoral artery	134

Introduction

In critical care, the monitoring is essential to the daily care of ICU patients, as the optimization of patient's hemodynamics, ventilation, temperature, nutrition, and metabolism is the key to improve patients' survival. Monitoring in The ICU is divided into invasive & noninvasive (*Kipnis et al.*, 2012).

Invasive monitoring in ICU is composed of intracranial pressure monitoring, Central Venous pressure monitoring, pulmonary artery catheter, direct arterial Blood pressure monitoring & intra-abdominal pressure monitoring.

Intracranial pressure monitoring: is indicated in patients with severe head injury especially if he's hypotensive (Susan et al., 2007). But, it has the risk of increase increasing cerebral edema, intracranial hemorrhage, cortical damage and intracranial infection (Raboel et al., 2012).

Central venous Catheter is helpful in monitoring fluid status, administration of irritant drugs or Vaso-active drugs, total parenteral nutrition, hemodialysis, temporary pacemaker and to monitor patients with cardiorespiratory failure (Organophosphorus poisoning, cerebrovascular accident, congestive cardiac failure, dilated cardiomyopathy, liver cirrhosis, GB syndrome, hypokalemic periodic paralysis, chronic cor-pulmonale, acute pulmonary embolism, myxedema coma with pericardial effusion).

But, it has the risk of causing pneumothorax, cardiac tamponade, arrhythmias and infection, air & catheter embolism (*Gopal et al.*, 2009).

A pulmonary Artery Catheter provides the Intensivist with critical hemo dynamic data that includes cardiac output mixed venous oxygen saturation, intrapulmonary and intra cardiac pressure.

It's used for pre-operative optimization of hemodynamics, intra operative monitoring and postoperative management of critically ill patients, and in cardiothoracic surgery patients Such as coronary artery bypass graft and valvular surgery to guide therapy and differentiate various types of Shock states.

But, it has The complication of balloon rupture, Knotting, pulmonary infarction, pulmonary artery perforation, thromboembolic complication, Rhythm disturbances, Intracardiac damage, Catheter related blood stream infection (*Rajaram et al.*, 2013).

Direct arterial blood pressure monitoring: indicated in hemodynamically unstable patients for beat to beat blood pressure monitoring & to assess the waveform & the effect of arrhythmia on perfusion & effect of large tidal volume of mechanically ventilated patient on his blood pressure. Also, it helps in case of frequent arterial Blood gas samples & arterial administration of drugs like thrombolytics & intraaortic balloon pump insertion (*Ribezzo et al., 2014*).

But, it may be complicated by thrombosis that may need surgical intervention, cerebral embolization especially by air & infection (*Bernd et al.*, 2002).

Aim of the Study

To spot the light on Invasive monitoring in ICU & its indications, contraindications, advantages, disadvantages and complications.

Chapter (1): Types of Invasive Monitoring in ICU

1-intracranial pressure monitoring:

In 1926, Harvey Cushing, American neurosurgeon, formulated the doctrine as we know it today, namely that with an intact skull, the volume of the brain, blood, and CSF is constant. An increase in one component will cause a decrease in one or both of the other components (*Cushing*, 1926).

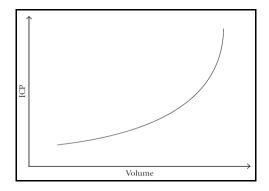


Figure (1): The volume / pressure curve

This relationship provides a compensatory reserve, also called spatial compensation. It is 60–80mL in young persons and 100–140mL in elderly, mainly due to cerebral atrophy. The volume/pressure curve is shown in Figure 1.

The first part of the curve is characterized by a very limited increase in pressure due to the compensatory reserve being large enough to accommodate the extra volume. With increasing volume, the compensatory reserve is eventually exceeded, causing a rapid increase in pressure (*Gjerris et al.*, 2004).

In cases of elevated ICP or circulatory hypotension, the cerebral perfusion pressure (CPP) is decreased. CPP is calculated by subtracting ICP from the mean artery pressure (MAP), defined as the sum of the diastolic pressure added to a third of the difference between systolic and diastolic pressure (*Raboel et al.*, 2012).

Under normal physiological conditions, the cerebral autoregulation maintains a constant flow of blood to the brain by dilating or constricting the arterioles. However,

This autoregulation is only effective with a MAP between 50 and 150mmHg. Pressure above the upper limit of autoregulation will cause hyperemia and cerebral edema. Pressures below the limit lead to insufficient blood flow and cerebral ischemia (*Raboel et al.*, 2012).

2-Hemodynamic monitoring:

Hemodynamics is the study of blood flow. Hemodynamic monitoring therefore refers to the monitoring of blood flow through the cardiovascular system. In the intensive care unit (ICU), hemodynamic monitoring is used to detect cardiovascular insufficiency, differentiate contributing factors and guide therapy.

In the hemodynamically unstable patient where volume status is not only difficult to determine, but excess fluid administration can lead to adverse consequences, utilizing markers that guide resuscitation can greatly affect outcomes (*Kipnis et al.*, 2012).

Frank starling law of the heart:

The frank starling law of the heart states that the stroke volume of the heart increases in response to an increase in the volume of blood filling the heart (the end diastolic volume) when all other factors remain constant. The increased volume of blood stretches the ventricular wall, causing cardiac muscle to contract more forcefully. The stroke volume also increases due to an increase in cardiac muscle contractility, independent of the end diastolic volume (Costanzo et al., 2007).

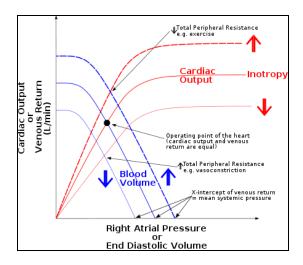


Figure (2): Cardiac output/right atrial pressure curve (Costanzo et al., 2007).