

The Relation Between Effector and Inhibitory Markers Expressed on CD8⁺ T Cells in Hepatitis C Virus Infection

Thesis Submitted for Partial Fulfillment of MD Degree In Clinical and Chemical Pathology

By Mai Magdy Abdel Wahed Mohamed

MB B.Ch, MSc Clinical and Chemical Pathology

Supervised by

Professor / Mona Mohamed Rafik

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Professor / Eman Ahmed El Ghoroury

Professor of Clinical and Chemical Pathology National Research Center

Professor / Abeer Al Sayed Shehab

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Professor / Rasha Mohamed Mamdouh

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Doctor/ Dina El Sayed EL Shennawy

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Thanks are given to ALLAH the source of all knowledge, by whose abundant aid this work has come to fruition.

It has been a great honor to proceed this work under the supervision of **Professor/Mona Mohamed Rafik**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University. I am greatly indebted to her for suggesting, planning the subject and supervising the whole work. To her, words of praise are not sufficient and I am really greatly indebted to her.

I am deeply grateful to to **Professor/Eman Ahmed El Ghoroury**, Professor of Clinical and Chemical Pathology, National Research Center, for her detailed and constructive comments, and for her important support throughout this work.

I would like to acknowledge my profound gratitude to **Professor/ Abeer Al Sayed Shehab** Professor of Clinical and Chemical Pathology,
Faculty of Medicine, Ain Shams University, for her useful assistance,
great support enlightening supervision and kind encouragement. To her
I shall be forever grateful.

I wish to express my warm and sincere thanks to **Professor/ Rasha Mohamed Mamdouh** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, I will never forget her unlimited help, continuous support, kind encouragement and wise guidance. She has given me much of her time and experience, and without her help and effort, this work would be impossible

I would like also to express my sincere gratitude and appreciation to **Doctor/ Dina El Sayed EL Shennawy** Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her helpful guidance, valuable advice and generous help in this work.

I would like also to express my sincere gratitude and appreciation to **Professor/ Laila Ahmed Abou Ismail**, Professor of Clinical and Chemical Pathology, National Research Center, for support and encouragement.

I would like also to express my sincere gratitude and appreciation to **Doctor/Dalia Adel Abd El Halim** Assistant Professor of Clinical and Chemical Pathology, National Research Center, for her valuable suggestions and assistance in this study.

My sincere thanks go out to my wonderful friends, **Dina Ali**, **Nancy Samir**, **Noha Nasr and Walid abdelhady** who not only have assisted me with many aspects of my thesis but also made my working days more enjoyable and made things run smoothly.

None of this work would have been possible without the numerous study subjects who donated their blood and time. I appreciate their generosity.

Finally, I must acknowledge the importance of my family. I am grateful to my parents who always believed that I could achieve anything and provided unconditional love.

العلاقة بين الدلالات التأثيرية والمثبطة الظاهرة على سطح الخلايا التوتية ${ m CD8}^+$ في الألتهاب الكبدي الفيروسي سي

رسالة توطئة للحصول على درجة الدكتوراه في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من الطبيبة / مي مجدي عبد الواحد محمد ماجستير الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ منى محمد رفيق

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ ايمان أحمد الغروري

أستاذ الباثولوجيا الإكلينيكية والكيميائية المركز القومي للبحوث

الأستاذ الدكتور/ عبير السيد شهاب

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ رشا محمد ممدوح

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الدكتور/ دينا السيد الشناوي

أستاذ مساعد الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٥

List of Contents

Title	Page
List of Figures	iii
List of Tables	V
List of Abbreviations	vii
INTRODUCTION & AIM OF THE WORK	1
REVIEW OF LITERATURE	5
Chapter (1): Hepatitis C Virus:	5
HCV structure	5
HCV life cycle	8
Genotypes and Genetic Heterogeneity	11
Epidemilogy of HCV	14
HCV in Egypt.	16
Clinical Picture	17
a-Acute Hepatitis C	17
b-Chronic Hepatitis C	18
Modes of Transmission	21
Diagnosis	25
Chapter(2): Immune Response to HCV Infection :	36
Induction of Immune response in Liver	36
Innate Immunity to HCV	37
Adaptive Immune response	48
I-Humoral immune response	49
II-Cellular immune response	52
Adaptive cellular response during acute HCV infection	53
Adaptive cellular response during chronic HCV infection	55
Chapter (3):CD8 T Cells and Viral Infection:	56
A-CD8 ⁺ T cells development and thymic education	56
B-Antigen Processing and antigen presentation by	59

Title	Page
C-CD8 ⁺ T cell response to infection or immunization	62
D-Effector functions of virus-specific CD8 ⁺ T cells	66
E-Primary memory CD8 ⁺ T cells: Development and Differentiation.	72
F-Role of CD127 and KLRG1 in memory CD8 T cells survival	75
CD127	76
KLRG1	78
G-Subsets of memory CD8 ⁺ T cells	83
H-Secondary response and secondary memory CD8 ⁺ T cells	85
I-Inflamation and CD8 ⁺ T cell response	87
J-Alteration in CD8 ⁺ T cell responses during chronic viral infection	93
K-Possible mechanisms Of CD8 ⁺ Tcell failure in persistent HCV infection	102
1. T cell dysfunction and exhaustion	104
2. The role of liver as tolerogenic organ	108
3. Antigen escape by selection of mutation	110
4. Suppression by regulatory T cells	111
5. Induction of immune regulatory cytokine	113
6. Suppression by HCV proteins	115
7. Impaired T cell maturation	116
8. Lack of CD4 ⁺ T cell help	117
SUBJECTS AND METHODS	119
RESULTS	138
DISCUSSION	152
SUMMARY& CONCLUSION	160
RECOMMENDATIONS	163
REFERENCES	164
ARABIC SUMMARY	-

List of Figures

Fig.	Title	Page
(1)	Structure of Hepatitis C virus	6
(2)	Genome organization of hepatitis C virus	8
(3)	HCV receptors for cell entry	9
(4)	Life cycle of hepatitis C virus	11
(5)	Geographic distribution of hepatitis C viral species	13
(6)	Global Prevalence of Hepatitis C Virus	15
(7)	Schematic presentation of HCV natural history	20
(8)	Polymerase chain reaction	34
(9)	Innate Immune signaling by RNA viruses	40
(10)	Evasion of Innate immune response by HCV	41
(11)	HCV-induced mechanisms of NK cell inhibition	46
(12)	CD8 T cell development and thymic education	58
(13)	T cell receptor signaling cascades	63
(14)	Successful activation of CD8 T cells	67
(15)	Subsets of memory CD8 T cells	84
(16)	Model for hierarchical exhaustion of CD8 T-cell functions during chronic viral infections	94
(17)	Possible Mechanisms of CD8 ⁺ T cell failure in persistent HCV infection	103
(18)	Scheme showing the balance between co-stimulatory/ apoptotic molecules and HCVspecific CTLs reactivity according to infection outcome	108
(19)	Gating strategies	125
(20)	Expression of markers on CD8 T cells	125

Fig.	Title	Page
(21)	CFSE stained cell Proliferation.	126
(22)	Principle of CFSE proliferation assay	126
(23)	Pro5 MHC Class I Pentamer.	131
(24)	Comparison between studied groups regarding CD3 ⁺ cells in peripheral Blood Mononuclear Cells	140

List of Tables

Table No.	Title	Page
(1)	Phenotypic and functional attributes to characterize naïve versus effector versus memory CD8 T cells.	82
(2)	Panels of surface staining of CD8 T cells	123
(3)	Sequence of HCV peptides complexed to MHC in Pro5 pentamers.	132
(4)	Panels of Pentamer staining of CD 8 T cells.	135
(5)	Comparison of Different T cell populations in PBMCs between the 3 studied groups	140
(6)	Comparison of T cell response to core peptides in Proliferating and Non Proliferating fractions in studied groups.	141
(7)	Comparison of T cell response to NS3-NS4 peptides between Proliferating and Non Proliferating Fractions in studied groups.	142
(8)	Comparison of T cell response to NS5 peptides in Proliferating and Non Proliferating Fractions in studied groups.	143
(9)	Two group comparitive studies of T cell response to core peptides in CFSE proliferation assay	144
(10)	Two group comparitive studies of T cell response to NS3-NS4 Peptides in CFSE proliferation assay	146
(11)	Two group comparitive studies of T cell response to NS5 Peptides in CFSE proliferation assay	148
(12)	Median percentages of CD8 ⁺ KLRG1 ⁺ HCV specific pentamer stained cells in studied groups	150

Table No.	Title	Page
(13)	Median percentages of CD8 ⁺ CD127 ⁺ HCV specific pentamer stained cells in studied groups	150
(14)	Median percentages of CD8 ⁺ KLRG1 ⁺ CD127 ⁺ HCV specific pentamer stained cells in studied groups	151
(15)	Median percentages of CD8 ⁺ CD57 ⁺ HCV specific pentamer stained cells in studied groups	151

List of Abbreviations

ALT : Alanine aminotransferase

ADAR1 : Adenosine deaminases acting on RNA

AICD : Activation induced cell death

AINR : Activation induced nonresponsivenes

ARFP : Alternate Reading Frame Protein

APC : Antigen presenting cell

AST : Aspartate aminotransferase activity

bDNA : Branched DNA

Bim : Building inflamatory protien

Blimp-1 : B lymphocyte induced maturation protein 1

BTLA : B and T-lymphocyte attenuator

CARD : Caspase activation and recruitment domainCDC : Centers for disease control and prevention

cDNA : Complementary DNA copy

CDR : Complement determining regions

CLDN : Claudin familyCMV : Cytomegalo virus

CTL : Cytotoxic T-Lymphocyte

CTLA-4 : Cytotoxic T-lymphocyte antigen 4

DC : Dendritic Cell

DNA : Deoxyribonucleic acidDs RNA : Double stranded RNA

DN : Double negativeDP : Double positiveEBV : Epstien Bar virus

EDTA : Ethyleneamide tetra-acetic acid

EIA : Enzyme immunoassay

ELISA : Enzyme-linked immunosorbent assay

ER : Endoplasmic reticulm

Eomes : Eomesodermin

FBS : Fetal bovine serum

FDA : Food ana Drud Administration

GAGs : Glycosaminoglycans

GAS : Gamma activated sequences

gClqR : Globular domain of clq receptor

GITR : Glucocoticoid-induced TNF receptor

GrzB : Granzyme B production

γ-GT : Gamma Glutamyl Transferase

HBV : Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV : Hepatitis C virus

HCWs : Health care workers

HIV : Human Immune Deficiency Virus

HLA : Human leucocyte antigen

HS : Highly SignificantHSV : Herpes simplex virus

HSCT : Hematopiotic stem cell transplantation

HVR : Hypervariable region

HVEM : Herpesvirus entry mediator

IFN: InterferonIFN- α: IFN alphaIFN- γ: IFN gamma

IFN- γ **R** : IFN gamma receptor

IgG : Immunoglobulin G

IL : Interleukin

IL-10R : Interleukin 10 receptor

IRF : Interferon regulatory factor

IV : Intravenous

ISDR : IFN- α sensitivity determining region

ISGs: interferon stimulated genes

ISRE : interferon stimulated response element

ITIM : immunoreceptor tyrosine-based inhibitory

motif

IPS-I : IFN-β promoter stimulator 1

JAK : Janus Kinase

KLRG-1 : Killer lectin-like receptor

LCMV : Lymphocyte choriomeningitis virus

LDL-R : LDL receptors

LFL : Log fluorescence

LILs : Liver inflammatory lymphocytesLSEC : Liver sinusoidal endothelial cellsMAFA : Mast cell function associated Ag

MDc : Myloid Dendritic Cell

MHC : Major histocompatibility complex

MICA : Major histocompatibility complex class I-

related chain A

MIP-1 β : Macrophage inflammatory protien 1 β

MNL : Mononuclear cell layer

MPEC : Memory precursor effector cell

MPGN : Membranoproliferative glomerulonephritis

nAbs : Neutralizing antibodiesNANBH : Non-A, non-B hepatitis

NC : Non-coding

NF-κB : Nuclear factor- κBNK : Natural killer cells

NKR : Natural killer cells receptor

NKT : Natural killer T cellsNS : Nonstructural protein

NS: Non-Significant

OAS1 : Oligoadenylate synthetasest

PAT : Parentral antishistosomal therapy
PBMC : Peripheral blood mononuclear cell

PBS : Phosphate buffer saline

PC : Personal computer

PCR : Polymerase chain reaction
PDC : Plasmacytoid denderitic cell

PD-1 : Programmed cell death-1

PDL-1 : Programmed cell death-1 receptor ligand

PKR : RNA dependant protein kinase

PHS : Pooled human serum

PI-v HRG : Proliferation Index -ve High Risk groupPI+v HRG : Proliferation Index +ve High Risk group

RIBA : Recombinant immunoblot assay
RIG-I : Retinoic acid—inducible gene I

RNA : Ribonucleic acid RNase L : endoribonuclease L

RT-PCR: Reverse transcriptase PCR

S : Significant

SIV : Simian immunodeficiency virus

SLEC : Short lived effector cell

SPSS : Statistical Package for Special Sciences

SR-B1 : Scavenger receptor class B1

STAT : Signal transducer and activator of

: transcription

TAP : Transporter associated with antigen

processing

TCR : T cell receptor

TCM : Central memory cells
TEM : Effector memory cells

TGF β : Tansforming growth factor β

Th2 : T-helper 2

TLR : Toll like receptor

TIR : Toll/interleukin-1 receptor

TMA : Transcription-mediated amplification

TNF : Tumor necrosis factor

T-regs : T regulatory

TRIF : Toll/IL-1 domain containing adaptor

inducing IFN-β

TRM : Tissue residual memory T cell

UTR : Untranslated region

VSV : Vesicular stomatitis virus

VV . Vaccinia virus

VZV Varicela zoster virus

WHO . World Health Organization