ENVIRONMENTAL STRESSES MITIGATION ON SEEDLINGS OF SOME PASTURE SHRUBS

By

GOSON ABD EI-HAMEED AL-RAJAB AGA

B. Sc. Agric. Eng. (Ecology& Forests), Aleppo University, Syria, 1998M.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2006

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Agronomy)

Department of Agronomy
Faculty of Agriculture
Ain Shams University

2010

Approval Sheet

ENVIRONMENTAL STRESSES MITIGATION ON SEEDLINGS OF SOME PASTURE SHRUBS

By

GOSON ABD EI-HAMEED AL-RAJAB AGA

B. Sc. Agric. Eng. (Ecology& Forests), Aleppo University, Syria, 1998M.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2006

This thesis for Ph. D. degree has been approved by:

Prof. Dr. Mohamed Thanaa Hassan		
Head of Research Emeritus of Agrono	omy, Institute of Agronomy,	
Agricultural Research Center		
Prof. Dr. Olfat Hasan El-Bagoury		
Prof. Emeritus of Agronomy, Faculty	of Agriculture, Ain Shams	
University		
Prof. Dr. Mohamed Sami El-Habbal		
Prof. Emeritus of Agronomy, Faculty	of Agriculture, Ain Shams	
University		
Prof. Dr. Tawakul Younis Rizk		
Prof. Emeritus of Agronomy, Faculty	of Agriculture, Ain Shams	
University		

Date of Examination: 22 / 12 / 2009

ENVIRONMENTAL STRESSES MITIGATION ON SEEDLINGS OF SOME PASTURE SHRUBS

By

GOSON ABD EI-HAMEED AL-RAJAB AGA

B. Sc. Agric. Eng. (Ecology& Forests), Aleppo University, Syria, 1998M.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2006

Under the supervision of:

Prof. Dr. Tawakul Younis Rizk

Prof. Emeritus of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Mohamed Sami El-Habbal

Prof. Emeritus of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mahmoud Ibrahim El-Imeiry

Head of Research Emeritus of Agronomy, Institute of Agronomy, Agricultural Research Center

ABSTRACT

Goson Abd El-Hameed Al-Rajab Aga: Environmental Stresses Mitigation on Seedlings of some Pasture Shrubs. Unpublished Ph.D. Dissertation, Department of Agronomy, Faculty of Agriculture, Ain Shams University, 2010.

Several sets of experiments were carried out at the Faculty of Agriculture, Ain Shams University at Shoubra El-Kheima, Kalubia Governorate to study the effect of chemical and physical scarification on breaking seeds dormancy, investigating salt tolerance and testing some different stresses mitigation treatments to improve the germination percentage, growth and yield of some pasture shrubs. The investigated pasture shrubs were *Leucaena leucocephala* and three Acacia species i.e. *Acacia farnesiana*, *Acacia saligna* and *Acacia victoria*. The main results could be summarized as follow:

Results showed that the best cheeps and savest method for breaking the seed dormancy of the investigated pasture shrubs was that of treating the seeds by soaking in boiling water for 20 minutes. This physical method of breaking seed dormancy has improved the germination percentage up to 92.0 % with *A. saligna*, to 100 % with *A. farnesiana*. Meanwhile, similar findings were nearly obtained by H₂SO₄ as a chemical scarification method. Treating the seeds of the investigated pasture shrubs by soaking in pure H₂SO₄ for 30 minutes was the best in breaking dormancy of the investigated seeds and improved the germination % up to 92 to 98 % according to the pasture species.

Data also indicated that treatment T_1 (Soaking of seeds in tap water for 12 hours then drying and planting) was recorded the highest values in seedling fresh weight of *A. farnesiana*, germination % of *A. saligna* and germination %, plumule length and seedling fresh weight of *A. victoria* and gave the lowest values in germination % of *L.leucocephala*, plumule length of *A. farnesiana* and radicle length of *A. saligna*. While, treatment T_2 (Soaking in seawater 5 % for 12 hours then drying and planting) gave

the highest values in radicle length of *A. victoria* and seedling fresh weight of *A. saligna*. Whereas, treatment T₄ (Soaking of seeds in seawater 5% for 6 hours followed by soaking in seawater 10 % for 6 hours then drying and planting) recorded the highest values in germination %, plumule & radicle lengths and seedling fresh weight of *L.leucocephala*, plumule & radicle lengths of *A. farnesiana* and radicle length of *A. saligna*. Germination % of *A. farnesiana* was not significant affected by mitigation stress treatments.

In respect to the effect of PEG concentration on all studied traits of the investigated pasture shrubs revealed that the -16 bar of PEG concentration recorded the highest values in fresh weights of leaves, stems, plants and leaves / stems ratio of *L.leucocephala*, stems fresh weight of *A. farnesiana* at the first stage of growth, while, the -8 of PEG concentration gave the highest values in plant height of *L.leucocephala*, dry weights of leaves, stems and the whole plant (seedling) of *L.leucocephala* and *A. farnesiana*, whilst, the -4 bar of PEG concentration recorded the highest values in plant height and leaves fresh weight of *A. farnesiana*, plant, leaves and stems fresh and dry weights of *A. saligna* at the two stages of growth.

Results showed that increasing seawater concentrations from tap water up to 25 % caused significant depression in all studied traits of investigated pasture shrubs irrigated by seawater after one and two months from planting without and with application of humic acid with some exceptions. Plant height of *L.leucocephala* with application of humic acid and plant height of *A. farnesiana* without and with application of humic acid either irrigated with seawater after one or two months of planting was not significantly affected by seawater concentrations. Generally, results indicated that the application of humic acid improved all studied traits to different extents under the seawater concentrations after one or two months of planting.

Key words: Leucaena leucocephala, Acacia farnesiana, A. saligna, A. victoria, Seeds dormancy, Chemical and mechanical scarification, Seawater concentrations, Mitigation treatments, Salinity, PEG, Humic acid, Total carbohydrate Crude protein, Crude fiber, ash contents.

ACKNOWLEDGMENT

The author wishes to express her sincere appreciation and gratitude to her major **Prof. Dr. Tawakul Younis Rizk** Emeritus Prof. of Agron., Agron. Dept., Fac. of Agric., Ain Shams Univ. for suggesting the problem, valuble direct supervision, helpful suggestions and fruitful advice during the entire course of the work as well as his valuble efforts during the preparation of the manuscript.

Deep gratitude are also due to **Prof. Dr. Mohamed Sami El-Habbal** Emeritus Professor of Agron., Agron. Dept., Fac. of Agric., Ain Shams Univ. for his supervision and helpful assistance during the achievement of this work.

Sincere thanks and deep gratitude are due to **Prof. Dr. Mahmoud Ibrahim El-Imeiry**, Emeritus Head of Field Crops Res. Inst. Agric. Res. Center, for his supervision.

Sincere thanks are expressed to all staff members of the Agron. Dept., Fac. of Agric., Ain Shams Univ. Appreciation is extended to my family in Syria and my dear husband **Dr. Awad Mahmoud Al-Aswad** for their help and support, I feel deeply grateful to my dear country Syria.

CONTENTS

	Page
LIST OF TABLES	vii
INTRODUCTION	1
REVIEW OF LITERATURE	2
MATERIALS AND METHODS	28
RESULTS AND DISCUSSION	34
I . Breaking seed dormancy of some pasture shrubs	34
A . Effect of scarification with $H_2SO_4\ on. \ldots$	34
1. Germination percentage	34
A. 1. a. Effect of H_2SO_4 concentrations	34
A. 1. b. Effect of soaking periods	36
A. 1. c. Effect of the interaction.	36
2 . Plumule length (cm)	37
A. 2. a. Effect of H ₂ SO ₄ concentrations	37
A. 2. b. Effect of soaking periods	37
A. 2. c. Effect of the interaction.	37
3 . Radicle length (cm)	39
A. 3. a. Effect of H ₂ SO ₄ concentrations	39
A. 3. b. Effect of soaking periods	39
A. 3. c. Effect of the interaction	39
4 . Seedling fresh weight (mg)	41
A. 4. a. Effect of H ₂ SO ₄ concentrations	41
A. 4. b. Effect of soaking periods	41
A. 4. c. Effect of the interaction.	41
B. Effect of scarification by soaking seeds in tap water on	43
1. Germination percentage	43
2 . Plumule length(cm)	43
3. Radicle length	45
4. Seedling fresh weight.	45

C. Effect of scarification by soaking seeds in boiled water on:	45
1. Germination percentage	45
2 . Plumule length	47
3. Radicle length	48
4. Seedling fresh weight (mg)	48
II – Germination and post germination response of scarified	
seeds of the studied pasture shrubs to seawater	
concentrations	49
A. First experiments (laboratory experiments)	50
- Effect of seawater concentrations, plant species and their	
interaction on	50
1. Germination percentage	50
2 . Plumule length	51
3. Radicle length	5 3
4. Seedling fresh weight	53
B. Second set of experiments (Greenhouse experiments)	5 4
- Effect of seawater concentrations, plant species and their	
interaction on	5 4
1. Germination percentage	54
2 . Plumule length	55
3. Radicle length	56
4. Seedling fresh weight	57
III. Increasing salt tolerance and productivity of studied	
shrubs by some mitigation treatments	57
A. The first set of experiments	57
a. Seawater mitigation experiment	58
1. Germination percentage.	58
1. a. Effect of seawater concentrations	58
1. b. Effect of seawater mitigation treatments	58
1. c. Effect of the interaction	59
2. Plumule length(cm)	60
2 a Effect of seawater concentrations	60

2. b. Effect of seawater mitigation treatments	60
2. c. Effect of the interaction	61
3. Radicle length	62
3. a. Effect of seawater concentrations	62
3. b. Effect of seawater mitigation treatments	62
3. c. Effect of the interaction	63
4 – Seedling fresh weight (mg)	64
4. a. Effect of seawater concentrations	64
4. b. Effect of seawater mitigation treatments	65
4. c. Effect of the interaction	66
b. Effect of polyethylene glycol (PEG) treatments	68
- Effect of polyethylene glycol, seawater concentrations as	
well as their interaction on	66
1. Germination percentage	66
1. a. Effect of polyethylene glycol (PEG) concentrations	66
1. b. Effect of seawater concentrations	67
1. c. Effect of the interaction.	68
2. Plumule length	68
2. a. Effect of polyethylene glycol (PEG) concentrations	68
2. b. Effect of seawater concentrations	68
2. c. Effect of the interaction.	68
3 . Radicle length.	70
3. a. Effect of polyethylene glycol (PEG) concentrations	70
3. b. Effect of seawater concentrations	70
3. c. Effect of the interaction.	70
4. Seedling fresh weight (mg)	71
4. a. Effect of polyethylene glycol (PEG) concentrations	71
4. b. Effect of seawater concentrations	7 1
4. c. Effect of the interaction.	72
- Effect of polyethylene glycol, soaking periods and their	
interaction:	73
1- Germination percentage	73

1. a. Effect of soaking periods	73
1. b. Effect of PEG concentrations	73
1. c. Effect of the interaction	73
2. Plumule length	73
2. a. Effect of soaking periods	73
2. b. Effect of PEG concentrations	74
2. c. Effect of the interaction	74
3. Radicle length	75
3. a. Effect of soaking periods	75
3. b. Effect of PEG concentrations	75
3. c. Effect of the interaction	75
4 . Seedling fresh weight	76
4. a. Effect of soaking periods	76
4. b. Effect of PEG concentrations	77
4. c. Effect of the interaction	77
-Effect of the interaction between seawater concentrations	
and soaking periods	78
1. Germination percentage	78
2 . Plumule length	79
3. Radicle length	80
4. Seedling fresh weight	80
2. The second set of experiments	81
A. Effect of polyethylene glycol (PEG) treatments	82
A.1. Plant height	82
A.1.a. Effect of seawater concentrations	82
A.1.b. Effect of PEG concentrations	83
A.1.c. Effect of the interaction	85
2. Leaves fresh weight	85
A.2.a. Effect of seawater concentrations	85
A 2 h. Effect of PEG concentrations	86

A.2.c. Effect of the interaction.	87
3. Stem fresh weight (gm/plant)	87
A.3.a. Effect of seawater concentrations	87
A. 3. b. Effect of PEG concentrations	88
A.3.c. Effect of the interaction	88
4. Plant fresh weight	89
A.4.a. Effect of seawater concentrations	89
A. 4. b. Effect of PEG concentrations	90
A. 4. c. Effect of the interaction	91
5. Leaves / stems ratio	91
A. 5. a. Effect of seawater concentrations	91
A. 5. b. Effect of PEG concentrations	92
A. 5. c. Effect of the interaction	93
6. Leaves dry weight (gm/plant)	93
A. 6. a. Effect of seawater concentrations	93
A. 6. b. Effect of PEG concentrations	93
A. 6. c. Effect of the interaction.	94
7. Stem dry weight (gm/plant)	95
A. 7. a. Effect of seawater concentrations	95
A. 7. b. Effect of PEG concentrations	95
A. 7. c. Effect of the interaction.	95
8. Plant dry weight (gm/plant)	96
A. 8. a. Effect of seawater concentrations	96
A. 8. b. Effect of PEG concentrations	97
A. 8. c. Effect of the interaction	97
9. Leaves / stems ratio	99
A. 8. a. Effect of seawater concentrations	99
A. 8. b. Effect of PEG concentrations	99
A. 8. c. Effect of the interaction.	99
B . Effect of humic acid treatment	100
B. a. Effect of seawater concentrations with and without	
humic acid on	100

B. a. 1. Plant height (cm)	100
B. a. 2. Leaves fresh weight (gm /plant)	101
B. a. 3. Stem fresh weight (gm/plant)	102
B. a. 4. Plant fresh weight (gm/plant)	102
B. a. 5. Leaves / stems ratio	103
B. a. 6. Leaves dry weight (gm/plant)	105
B. a. 7. Stem dry weight (gm/plant)	105
B. a. 8. Plant dry weight (gm/plant)	106
B. a. 9. Leaves / stems ratio	107
C. Chemical composition	108
C.1. Total carbohydrates percentage	108
C.2. Crude protein percentage	109
C.3. Crude fiber percentage	110
C.4. Total ash percentage	11
SUMMARY	112
REFERENCES	124
ARARIC SUMMARY	

LIST OF TABLES

No.]	Page
1	The chemical content of the used seawater	29
2	Effect of H ₂ SO ₄ treatments on germination percentage of	
	Leucaena and three Acacia species after 21 days from	
	treatments	35
3	Effect of H ₂ SO ₄ treatments on plumule length (cm) of	
	Leucaena and three Acacia species after 21 days from	
	treatments	38
4	Effect of H ₂ SO ₄ treatments on radicle length (cm) of <i>Leucaena</i>	
	and three Acacia species after 21 days from	
	treatments.	40
5	Effect of H ₂ SO ₄ treatments on seedling fresh weight	
	(mg/plant) of Leucaena and three Acacia species after 21 days	
	from treatments.	42
6	Effect of soaking periods (days) in tap water, plant species and	
	their interaction on germination traits of Leucaena and three	
	Acacia species after 21 days from treatments	44
7	Effect of soaking periods (min.) in boiled water, plant species	
	and their interaction on germination traits of Leucaena and	
	three Acacia species after 21 days from treatments	47
8	Effect of seawater concentrations, plant species and their	
	interaction on germination traits of Leucaena and three Acacia	
	species after 21 days from soaking date	52
9	Effect of seawater concentrations, plant species and their	
	interaction on germination parameters of studied plant species	
	after 30 days from sowing	56
10	Effect of mitigation treatments, seawater concentrations and	
	their interaction on germination percentage of the studied plant	
	species after 30 days from sowing	59

11	Effect of mitigation treatments, seawater concentrations and	
	their interaction on plumule length (cm) of the studied plant	
	species after 30 days from sowing	61
12	Effect of mitigation treatments, seawater concentrations and	
	their interaction on radicle length (cm) of the studied plant	
	species after 30 days from sowing	63
13	Effect of mitigation treatments, seawater concentrations and	
	their interaction on seedling fresh weight (mg) of the studied	
	plant species after 30 days from sowing	65
14	Effect of PEG, seawater concentrations and their interaction	•
	on germination percentage of the studied pasture species after	
	30 days from sowing	67
15	Effect of PEG concentrations, seawater concentrations and	0,
10	their interaction on plumule length (cm) of the studied pasture	
	species after 30 days from sowing	69
16	Effect of PEG, seawater concentrations and their interaction	U)
10	on radicle length (cm) of the studied pasture species after 30	
	days from sowing	71
17	Effect of PEG concentrations, seawater concentrations and	, 1
1/	their interaction on seedling fresh weight (mg) of studied	
	pasture species after 30 days from sowing	72
18	Effect of PEG, soaking periods and their interaction on	1 4
10	germination percentage of the studied pasture species after 30	
	days from sowing	74
10	Effect of PEG concentrations, soaking periods and their	/4
19		
	interaction on plumule length (cm) of the studied pasture	75
20	species after 30 days from sowing.	13
4 U	Effect of PEG concentrations, soaking periods and their interestion on radials length (am) of the studied necture	
	interaction on radicle length (cm) of the studied pasture	7/
21	species after 30 days from sowing.	70
41	Effect of PEG concentrations, soaking periods and their	
	interaction on seedling fresh weight (mg) of the studied	