The Effect of Left Ventricular Geometry on Myocardial Performance Index in Hypertensive Patients

Thesis Submitted for fulfilment of Master Degree in Cardiology

$\mathbf{B}\mathbf{y}$

Mohammed Yasser Allam

M.B.B.Ch

Supervised by

Dr. Ramez Guindy

Professor of Cardiology

Faculty of medicine- Ain Shams University

Dr. Mohamed Ahmed Abd El Rahman

Lecturer of Cardiology

Faculty of medicine- Ain Shams University

Faculty of medicine

Ain Shams University

2016

Acknowledgement

First and foremost, thanks to **Allah the Almighty** to whom I relate any success in achieving any work in my life.

I would like to express my very great appreciation to Dr., Ramez Guindy, Professor of cardiology Faculty of Medicine, Ain Shams University, for his precious instructions, expert supervision and valuable comments during the course of this work.

I would like to offer my special thanks and deep appreciation to Dr. Mohamed Ahmed Abd El Rahman, Lecturer of cardiology Faculty of Medicine, Ain Shams University, for his help and valuable advice and suggestions throughout the performance of this work.

I wish to thank my wife Dr. Noura who support me from the first step and do everything to complete my study.

I wish to thank my parents, sisters and brothers for their undivided support; they helped and encouraged me to complete my work.

I would like also to thank my dear friend **Dr. Azza Omran**; she helped me a lot to complete my work. And also my friends in **El Matrya Teaching Hospital**.

List of content

	Page
List of Figures	I
List of Tables	ΙV
List of Abbreviations	V
Introduction	1
Aim of the study	3
Review of Literature	
Chapter (1): Definition and epidemiology of hypertension	4
Chapter (2): Pathophysiology of hypertension	7
Chapter (3):Hypertensive heart disease	17
Patients and Methods	31
Results	36
Discussion	55
Summary	58
Conclusions	61
Recommendations	62
References	63
Arabic Summary	١

List of the Figures

Fig. No.	Title	Page No.
Figure 1	schematic diagram showing the mechanism by which autoantibody May promote increase in vascular tone, cardiac output and renal and Vascular inflammation contribute to hypertension	12
Figure 2	Macroscopic view of the typical geometric pattern of concentric LVH seen in hypertensive patients	19
Figure 3	The Laplace law and how it explain the development of concentric and eccentric LVH	21
Figure 4	Microscopic picture show comparison of collagen fibers in Endomyocardial tissue between normotensive and hypertensive Patients	24
Figure 5	Microscopic picture show endomyocardial tissue from a patient With LVH	24
Figure 6	Pathways of LV remodeling progression secondary to systemic Hypertension	25
Figure 7	Classification of LV geometry based on LV mass and relative Wall thickness	27
Figure 8	Measurement of Doppler interval from aortic valve opening to Aortic valve closure	30
Figure 9	Echocariographic image show estimation of MPI	35
Figure 10	Pie chart represent the prevalence of LVH among patient group	36

Figure 11	Pie chart represent the distribution of type of LVH geometry Among hypertensive patients	37
Figure 12	Bar chart show the comparison between the control & hypertensive Patients regarding age, weight, BMI, BSA	39
Figure 13	Bar chart show the comparison between the control & hypertensive Patients regarding LV PWDd, IVSDd, LVIDd, LVIDs, RWT	39
Figure 14	Bar chart show the comparison between the control & hypertensive Patients regarding LVM, LVMI, EF, FS, IVCT, ET, IVRT	40
Figure 15	Bar chart show the comparison between the control & hypertensive Patients regarding MPI	40
Figure 16	Bar chart show the comparison between the control & non LVH hypertensive patients regarding age, weight, BMI, BSA	42
Figure 17	Bar chart show the comparison between the control & non LVH hypertensive patients regarding LVPWDd, IVSDd, LVIDd,LVIDs, RWT	42
Figure 18	Bar chart show the comparison between the control & non LVH hypertensive patients regarding LVM, LVMI, EF, ET, IVCT,IVRT	43
Figure 19	Bar chart show the comparison between the control & non LVH hypertensive patients regarding MPI	43
Figure 20	Bar chart show the comparison between LVH & non LVH hypertensive patients regarding age, weight, BMI, BSA	45

Figure 21	Bar chart show the comparison between the LVH & non LVH hypertensive patients regarding LVPWDd, IVSDd, LVIDD, RWT	45
Figure 22	Bar chart show the comparison between LVH & non LVH hypertensive patients regarding LVM, LVMI, EF, ET, IVCT,IVRT	46
Figure 23	Bar chart show the comparison between LVH & non LVH hypertensive patients regarding MPI	46
Figure 24	Bar chart show the comparison between CR, EH, CH regarding Age, weight BMI, BSA, years of hypertension	48
Figure 25	Bar chart show the comparison between CR, EH, CH regarding LVPWDd, IVSDd, LVIDd,LVIDs, RWT	48
Figure 26	Bar chart show the comparison between CR, EH, CH regarding LVM, LVMI, EF, ET, IVCT,IVRT	49
Figure 27	Bar chart show the comparison between CR, EH, CH regarding MPI	49

List of the Tables

Table No.	Title	Page No.
Table 1	Definition and calcification of office blood pressure level	5
Table 2	Molecules that regulate the metabolism of fibrillar collagen in the heart	22
Table 3	Factors with a causal role in left ventricular hypertrophy	26
Table 4	The distribution of the hypertrophy geometry among the hypertensive patients	37
Table 5	The comparison of clinical and echocardiographic data between the normal and all hypertensive patients	38
Table 6	The comparison of clinical and echocardiographic data between the normal and non LVH of hypertensive patients	41
Table 7	The comparison of clinical and echocardiographic data between LVH and non LVH of hypertensive patients	44
Table 8	The comparison of clinical and echocardiographic data between the LVH of hypertensive patients according to LVH geometry	47
Table 9	The pearson correlation between echocardiographic findings and the MPI in each LVH geometric group	50
Table 10	The bivariate correlation between echocardioghraphic findingsAnd MPI among all LVH patients and regression model	51

List of the abbreviation

ACE angiotensin converting enzyme

ANG angiotensin

AT angiotensin type

BMI body mass index

BP blood pressure

BSA body surface area

CAD coronary artery disease

CH concentric hypertrophy

CKD chronic kidney disease

CR concentric remodling

CVD cardiovascular disease

DBP diastolic blood pressure

ECFV extracellular fluid volume

EF ejection fraction

EH eccentric hypertrophy

ESRD end stage renal disease

ET ejection time

FS fractional shortening

GFR Glomerular filtration rate

HCM hypertrophic cardiomyopathy

HDL high density lipoprotein

HTN-CM hypertensive cardiomyopathy

ICT isovolumetric contraction time

IHD ischemic heart disease

IRT isovolumetric relaxation time

IVSd interventricular septal thickness diastole

LDL low density lipoprotein

LV left ventricle

LVH left ventricular hypertrophy

LVIDd left ventricle internal dimension diastole

LVIDs left ventricle internal dimension systole

LVM left ventricle mass

LVMI left ventricular mass index

MAP mean arterial pressure

MI myocardial infarction

MPI myocardial performance index

NG normal geometry

NHP Egyptian National Hypertension Project

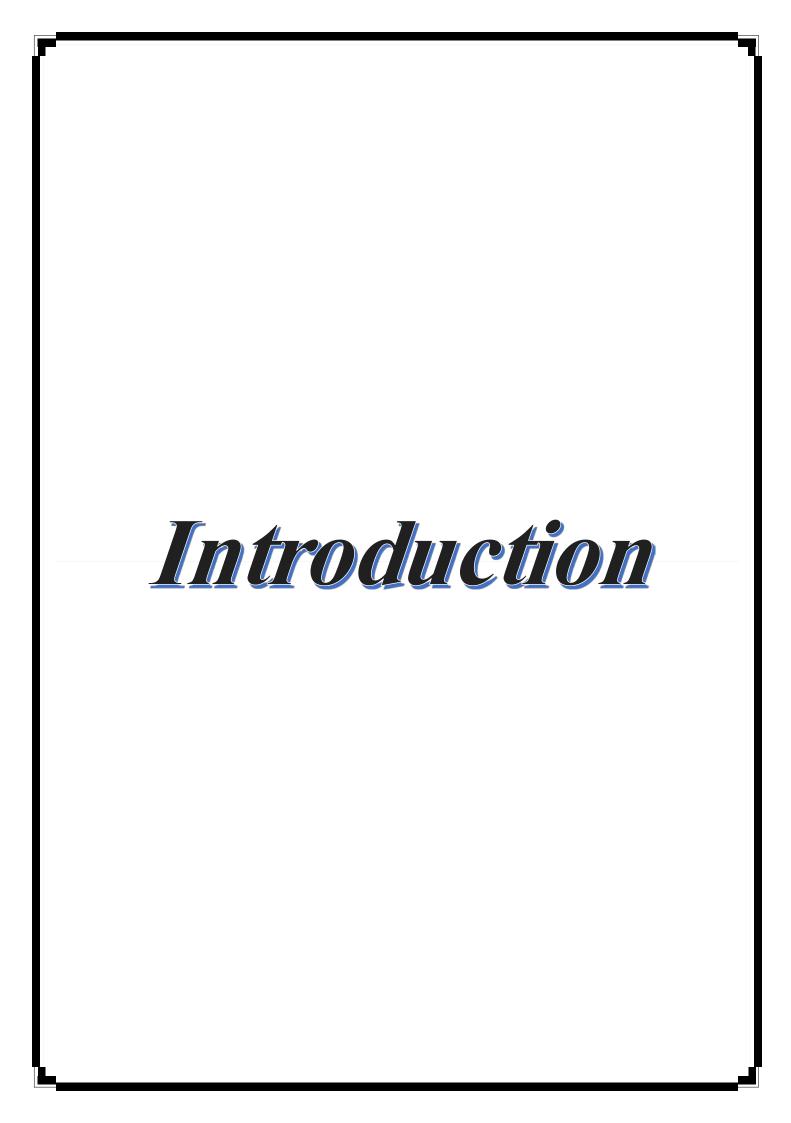
NSAID non-steroidal anti-inflammatory drug

PWTd posterior wall thickness diastole

RAAS renin–angiotensin–aldosterone system

RAS renin angiotensin system

RWT relative wall thickness


SBP systolic blood pressure

TGF tubuloglomerular feedback

TI Tei index

VSMC vascular smooth muscle cell

WHO world health organization

Introduction

Systemic arterial hypertension is defined as a resting systolic blood pressure (SBP) 140 mm Hg or greater, and diastolic blood pressure (DBP) 90 mm Hg or greater in patients with these BP values treatment induced BP reductions are beneficial (Mancia et. al., 2013).

Almost three-quarters of people with hypertension (639 million people) live in developing countries with limited health resources. The overall prevalence rate of pre-hypertension and hypertension in Egypt were 57.2% and17.6% respectively. Only 25.2% of the population had normal blood pressure levels of <120/80 mmHg. (**Zawilla, 2013**).

The changes in left ventricular (LV) structure and geometry that evolve after myocardial injury or overload usually involve chamber dilation and/or hypertrophy. Such architectural remodeling can be classified as eccentric or concentric. Consideration of LV volume, mass, and relative wall thickness (or mass/volume) allows classification of LV remodeling that includes virtually all LV remodeling changes that are seen in health and diseased person. LVH is a strong independent predictor of cardiovascular morbidity and mortality. In case of hypertension, it increases the risk of stroke, ischemic heart disease, and eventually congestive heart failure. Pressure overload of the left ventricle results in an increment in ventricular mass with a high relative wall thickness (RWT); the earliest change appears to be an increase in RWT before there is a detectable increase in LV mass. These architectural changes seen in concentric hypertrophy and concentric remodelling provide a mechanism for maintenance of normal LV systolic wall stress in the presence of a high systolic pressure. Such preservation of systolic wall stress allows maintenance of normal or near-normal LV systolic function and performance (Gaasch and Zile, 2011).

The combination of left ventricular mass index (LVMI) and relative wall thickness (RWT) were be used to identify different patterns of left ventricular geometry:

- Concentric hypertrophy (increased LVMI and RWT).
- Concentric remodelling (normal LVMI and increased RWT).
- Eccentric hypertrophy (increased LVMI and normal RWT).
- Normal geometry (Normal LVMI and RWT) (**Drazner**, 2011).

The Tei index of myocardial performance is a combined index of systolic and diastolic dysfunction and has been shown to be a predictor of cardiovascular outcome in heart disease. The relationship between the Tei index and left ventricular geometry has not been well studied (**Akintunde et al., 2011**)

Aim of the Study

Aim of the study

To assess the relationship between left ventricular geometry and the myocardial performance index among hypertensive patients.