

VOLTAGE AND FREQUENCY CONTROL OF STAND-ALONE DOUBLY-FED INDUCTION GENERATORS FOR VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

By

Mohamed Mahmoud Anwar Mohamed Sharawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

ELECTRICAL POWER AND MACHINES ENGINEERING

VOLTAGE AND FREQUENCY CONTROL OF STAND-ALONE DOUBLY-FED INDUCTION GENERATORS FOR VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

By Mohamed Mahmoud Anwar Mohamed Sharawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. Adel Shaltout	Prof. Dr. Naser M. B. Abdel-Rahim
Professor	Professor
Electrical Power and Machines Engineering	Electrical Engineering Department
Department	Faculty of Engineering at Shoubra
Faculty of Engineering	Benha University
Cairo University	

VOLTAGE AND FREQUENCY CONTROL OF STAND-ALONE DOUBLY-FED INDUCTION GENERATORS FOR VARIABLE SPEED WIND ENERGY CONVERSION SYSTEMS

By Mohamed Mahmoud Anwar Mohamed Sharawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Adel Shaltout, Thesis Main Advisor

Prof. Dr. Naser M. B. Abdel-Rahim, Member

Prof. Dr. Mahmoud Mohamed Mahmoud Abdel-Hakim, Internal Examiner

Prof. Dr. Fahmy Metwally Ahmed Bendary, External Examiner

Prof. Dr. Fahmy Metwally Ahmed Bendary, External Examiner Prof. of Electrical Power Systems and Automatic Control – Electrical Engineering Department – Faculty of Engineering at Shoubra – Benha University.

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

Engineer's Name: Mohamed Mahmoud Anwar Mohamed Sharawy

Date of Birth: 28 / 12 / 1987 **Nationality:** Egyptian

E-mail: eng.mohamed.sharawy@gmail.com

Phone: 01220313358

Address: 14 El Fady St. – Dr. Lasheen St. – Faysal - Giza

Registration Date: 1 / 10 / 2011 **Awarding Date:** / / 2016 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Adel Shaltout

Prof. Naser M. B. Abdel-Rahim (Prof. of Power Electronics – Electrical Engineering Department – Faculty of Engineering at

Shoubra – Benha University)

Examiners:

Prof. Fahmy Metwally Ahmed Bendary, (External examiner) (Prof. of Electrical Power Systems and Automatic Control – Electrical Engineering Department – Faculty of Engineering at

Shoubra – Benha University)

Prof. Mahmoud Mohamed Mahmoud Abdel-Hakim (Internal

examiner)

Porf. Adel Shaltout (Thesis main advisor)

Porf. Naser M. B. Abdel-Rahim (Member) (Prof. of Power Electronics – Electrical Engineering Department – Faculty of

Engineering at Shoubra – Benha University)

Title of Thesis:

Voltage and Frequency Control of Stand-Alone Doubly-Fed Induction Generators for Variable Speed Wind Energy Conversion Systems

Key Words:

Stand-Alone Wind Energy Conversion Systems; Aerodynamics of Wind Turbine; Dynamic Modeling of Doubly-Fed Induction Generator; Indirect Vector Control; Maximum Power Point Tracking

Summary:

Self-excited induction generators usually suffer from variable output voltage frequency and magnitude with variation of wind speed when they are used in stand-alone variable speed Wind Energy Conversion Systems (VSWECS). The doubly-fed induction generators (DFIGs) have been used in stand-alone VSWECS applications. Controlling the magnitude and frequency of the stator output voltage for DFIG achieved by controlling the rotor input voltage, magnitude and frequency. The maximum power point tracking control technique is applied to DFIG for optimum operating point.

Acknowledgments

First, I would like to thank ALLAH the beneficent, the Merciful. Praise be to ALLAH, lord of the world. ALLAH guides me along the way.

I would like to thanks my two supervisors **Prof. Dr. Adel Diaa El Din Shaltot**, Department of Electrical Power and Machines Engineering, Faculty of Engineering, Cairo University and Prof. **Dr. Naser M. B. Abdel-Rahim**, Department of Electrical Power and Machines Engineering, Faculty of Engineering at Shoubra, Benha University, for their guidance, support, motivation and encouragement to work on this thesis. Their readiness for consultation at all times, their educative comments, their concern and assistance have been invaluable.

Special thanks to the examiners who accepted arbitration this thesis and I welcome all constructive comments about this thesis.

I am very thankful to my **parent** and my **wife** for providing constant encouragement during my studies and assisting me in completion of the thesis and pushing me to be better. They have great sources of inspiration to me and I thank them from the bottom of my heart.

At last but not least, I would like to thank the staff of electrical engineering department, faculty of engineering – Cairo University, for constant support and providing place to work during thesis period. I would also like to extend my gratitude to our faculty, faculty of engineering at Shoubra- Benha University, who are with me during thick and thin.

Table of Contents

ACKNOWLED	GMENTS	I
TABLE OF CO	NTENTS	II
LIST OF TABL	ES	IV
LIST OF FIGU	RES	V
NOMENCLAT	URE	VIII
	••••••	
	NTRODUCTION	
1.1.	Introduction	
1.2.	INTRODUCTION TO WIND ENERGY CONVERSION SYSTEM	
1.3.	Types of Wind Turbines Used in WECS	
1.3.1.	Vertical Axis Wind Turbine (VAWT)	
1.3.2.	Horizontal Axis Wind Turbine (HAWT)	
1.4.	COMPONENTS OF HAWT USED IN WECS	
1.5.	Types of Electrical Generators Used in Fixed and Va	RIABLE
	Speed WI	
1.5.1.	Direct Current Generators	
1.5.2.	AC Synchronous Generators (SGs)	
1.5.3.	AC Asynchronous (Induction) Generators	
1.5.3.1.	Squirrel- Cage Induction Generators (SCIGs)	
1.5.3.2.	Wound-Rotor (Slip Ring) Induction Generator	
1.5.3.2.1. 1.5.3.2.2.	Limited Speed WECS Mode of OperationVariable Speed WECS Mode of Operation	
1.6.	STAND-ALONE WIND ENERGY CONVERSION SYSTEM	
1.7.	THESIS OBJECTIVES	
1.7.	THESIS OBJECTIVES THESIS ORGANIZATION	
CHAPTER 2 : N	MODELLING OF WIND TURBINE	
2.1.	INTRODUCTION	
2.2.	AERODYNAMIC MODEL	
2.3.	MATLAB/ SIMULINK OF WIND TURBINE	19
CHAPTER 3: N	MODELLING OF DOUBLY-FED INDUCTION GENERAL	ΓOR 23
3.1.	INTRODUCTION	23
3.2.	DFIG MODEL EXPRESSED IN THE ABC REFERENCE FRAME	23
3.3.	DFIG MODEL EXPRESSED IN THE D-Q REFERENCE FRAME	29
3.4.	MATLAB/ SIMULINK MODEL FOR DFIG	
CHAPTER	4 : CONTROL AND MPPT OF STAND-ALONE DFIG US	SED IN
4.1.	INTRODUCTION	43

4.2.	EFFECTS OF ROTOR INPUT VOLTAGE OF DFIG	43
4.2.1.	Sub-Synchronous Speed Mode of Operation	44
4.2.2.	Super-Synchronous Speed Mode of Operation	45
4.3.	FUNDAMENTALS OF VECTOR CONTROL OF INDUCTION MACHINES	47
4.4.	VECTOR CONTROL IMPLEMENTATION OF DFIG	50
4.5.	MAXIMUM POWER POINT TRACKING FOR DFIG USED IN WECS	53
4.5.1.	Characteristics of Wind Turbines for MPPT	53
4.5.1.1.	Low-Speed Region	54
4.5.1.2.	Moderate-Speed Region	
4.5.1.3.	High-Speed Region	
4.5.2.	Maximum Power Point Tracking Control Algorithms	
4.5.2.1.	Algorithms Based on Wind Speed and Turbine Speed	
4.5.2.2.	Algorithms Based on The Output Power Measurement and Calculation	
4.5.2.3.	Algorithms Based on Power Characteristic Curve	57
CHAPTER 5:	MATLAB/SIMULINK AND SIMULATION RESULTS	58
5.1.	Introduction	58
5.2.	DFIG Power Flow	58
5.3.	SUB-SYNCHRONOUS SPEED MODE OF OPERATION	60
5.3.1.	Mechanical Calculations	60
5.3.2.	Electrical Calculations	61
5.3.3.	Simulation and Results	63
5.4.	SUPER-SYNCHRONOUS SPEED MODE OF OPERATION	70
5.4.1.	Mechanical Calculations	70
5.4.2.	Electrical Calculations	72
5.4.3.	Simulation and Results	73
5.5.	MPPT FOR DFIG BASED ON POWER CHARACTERISTIC CURVE CONT	ΓROL
	STRATEGY	79
5.5.1.	MATLAB/SIMULINK Model Implementation Using MPPT Algor	rithm
		80
CHAPTER 6:	CONCLUSIONS AND FUTURE WORKS	88
6.1.	SUMMARY	88
6.2.	Future Works	
DEFERENCES	2	90

List of Tables

Table 1.1: comparison between VAWT and HAWT	3
Table 2.1: Turbine main parameters	19
Table 3.1: DFIG Main Parameters	

List of Figures

Figure 1.1: Block Diagram showing the components of WECS connected to grid	
(dashed item is architecture dependent)	2
Figure 1.2: Horizontal axis wind turbine (HAWT) and vertical axis wind turbine	
(VAWT) [3]	4
Figure 1.3: Main Components of HAWT used in WECS	4
Figure 1.4: Contributions of main components for wind turbine in percentage terms	
the overall cost	
Figure 1.5: Schematic of a DC generator system	7
Figure 1.6: Configurations of synchronous generator used in variable speed WECS	((a)
with gearbox and (b) without gearbox)	
Figure 1.7: Grid connected-Fixed speed WECS using SCIGs	9
Figure 1.8: Grid connected-variable speed WECS using SCIGs	
Figure 1.9: Stand-alone-variable speed WECS using SCIGs	10
Figure 1.10: Slip ring induction generator used in limited variable speed WECS	11
Figure 1.11: DFIG used in variable speed WECS	
Figure 1.12: Proposed system of stand-alone DFIG used in variable-speed WECS	13
Figure 2.1: Block scheme of a variable speed wind turbine-generator systems mode	1.15
Figure 2.2: Different parts of wind turbine	
Figure 2.3: Flow of air through wind turbine	
Figure 2.4: Rotor blade and pitch angle of wind turbine	17
Figure 2.5: Betz Limit illustration	
Figure 2.6: Schematic block diagram of the wind turbine MATLAB model system .	
Figure 2.7: The power Coefficient C_P as function of tip speed ratio λ and blades ang	gle β
at wind speed equal 5.5 m/s and rotor radius of 42 m	
Figure 2.8: The power Coefficient C_P as function of tip speed ratio λ at $\beta = 0^{\circ}$	
Figure 2.9: The wind turbine power Pt at low speed shaft with the rotor angular spee	ed
ω_t at different wind speed V_w	21
Figure 2.10: The wind turbine torque T _t at low speed shaft with the rotor angular sp	
ω_t at different wind speed V_w	22
Figure 2.11: The generator mechanical input torque T _G at high speed shaft with the	
rotor rotational speed N_G at different wind speed V_w	
Figure 3.1: Ideal three-phase windings (stator and rotor) of the DFIG	
Figure 3.2: DFIG electric equivalent circuit	25
Figure 3.3: Three phase winding machine representation	
Figure 3.4: Transformed two-phase winding machine representation	
Figure 3.5: Stationary frame a-b-c to d ^s -q ^s axes transformation	
Figure 3.6: Stationary frame d ^s -q ^s to synchronously rotating frame d ^e -q ^e transformation	tion
	32
Figure 3.7: Dynamic d – q equivalent circuit of DFIG in synchronously rotating	
reference frame ((a) q-axis and (b) d-axis)	37
Figure 3.8: Matlab M-file calculations for DFIG	39
Figure 3.9: Schematic block diagram for the dynamic modelling of DFIG using	
MATLAB/SIMULINK	
Figure 3.10: Stator rms terminal output voltage V _t (V)	
Figure 3.11: Stator output frequency Fs (Hz)	
Figure 3.12: Generator rotational speed Ng (rpm)	42

Figure 3.13: Generator electromechanical torque T _g (N.m)	42
Figure 4.1: Transformation of rotor abc reference frame to d _r -q _r synchronously rotat	ting
reference frame at sub-synchronous speed	45
Figure 4.2: Transformation of rotor acb reference frame to d _r -q _r synchronously rotat	ting
reference frame at super-synchronous speed	46
Figure 4.3: Separately excited DC motor control	47
Figure 4.4: Vector-controlled induction machine	48
Figure 4.5: Implementation of vector control principle	
Figure 4.6: Vector control of DFIG	
Figure 4.7: Phasor diagram for stator flux oriented vector control	
Figure 4.8: Mechanical power against rotor speed for different wind speeds	
Figure 4.9: Ideal power curve of wind turbine	
Figure 4.10: Tip speed ratio control of WECS	
Figure 4.11: HCS Control Principle	
Figure 4.12: WECS with hill climb search control	
Figure 4.13: Power signal feedback control	
Figure 5.1: Power flow diagram of DFIG	
Figure 5.2: Turbine power with generator rotational speed at wind speed 5.5 m/s	
Figure 5.3: Generator mechanical torque with rotational speed at wind speed 5.5 m/s	
Figure 5.4: Control scheme for the stand-alone DFIG	
Figure 5.5: SIMULINK /Model of DFIG connected to wind turbine	
Figure 5.6: Quadrature axis of the rotor input current $I_{qr}(A)$	
Figure 5.7: Direct axis of the rotor input current $I_{dr}(A)$	
Figure 5.8: Instantaneous value of the rotor input voltage $v_{abcr}(V)$	
Figure 5.9: Zoom view of Figure 5.8 between 24.5 and 27 second	
Figure 5.10: Frequency of the rotor input voltage F _r (Hz)	
Figure 5.11: Generator rotational speed N _g (rpm)	
Figure 5.12: Rotor power P _r (W)	
Figure 5.13: Instantaneous stator output voltage v _{abcs} (V) of DFIG	
Figure 5.14: Stator rms terminal output voltage V _t (V)	
Figure 5.15: Stator output frequency F _s (Hz)	
Figure 5.16: Stator output and reference power (W)	
Figure 5.17: Generator electromechanical torque T _g (N.m)	
Figure 5.18: Turbine power with generator rotational speed at wind speed 7.5 m/s	
Figure 5.19: Generator mechanical torque with rotational speed at wind speed 7.5 m	
	71
Figure 5.20: Quadrature axis of the rotor input current I _{qr} (A)	73
Figure 5.21: Direct axis of the rotor input current I _{dr} (A)	
Figure 5.22: Instantaneous value of the rotor input voltage $v_{abcr}(V)$	
Figure 5.23: Zoom view of Figure 5.22 between 25 and 30 second	
Figure 5.24: Frequency of the rotor input voltage F _r (Hz)	
Figure 5.25: Generator rotational speed N _g (rpm)	
Figure 5.26: Rotor power P _r (W)	
Figure 5.27: Instantaneous stator output voltage v_{abcs} (V) of DFIG	
Figure 5.28: Stator rms terminal output voltage $V_t(V)$	
Figure 5.29: Stator output frequency F _s (Hz)	
Figure 5.30: Stator output and reference power (W)	78
Figure 5.31: Generator electromechanical torque T _g (N.m)	79
Figure 5.32: The wind turbine power P_t with the rotor angular speed ω_t	80
Figure 5.33: MPPT based on Power characteristic curve (Regulation of power)	

Figure 5.34: PSF control strategy and lookup table	81
Figure 5.35: Wind speed profile	82
Figure 5.36: Quadrature axis of the rotor input current $I_{qr}(A)$	82
Figure 5.37: Direct axis of the rotor input current I _{dr} (A)	83
Figure 5.38: Instantaneous value of the rotor input voltage $v_{abcr}(V)$	83
Figure 5.39: Zoom view of Figure 5.38 between 61 and 62 second	84
Figure 5.40: Frequency of the rotor input voltage F _r (Hz)	84
Figure 5.41: Generator rotational speed Ng (rpm)	85
Figure 5.42: Rotor power P _r (W)	85
Figure 5.43: Instantaneous stator output voltage v_{abcs} (V) of DFIG	86
Figure 5.44: Stator rms terminal output voltage V _t (V)	86
Figure 5.45: Stator output frequency F _s (Hz)	
Figure 5.46: Stator output and reference power (W)	87

Nomenclature

A The swept surface area = πR^2 (m²).

C_P The power coefficient.

DFIG Doublly-fed induction generator.

EESG Electrically excited synchronous generator.

GSC Grid side converter.

HAWT Horizontal axis wind tyrbine.

HCS Hill-climb search.

 i_{as} , i_{bs} and i_{cs} The stator currents of phases a, b, and c (A).

 i_{ar} , i_{br} and i_{cr} The rotor currents of phases a, b, and c (A).

 i_{qs} , i_{ds} , i_{qs} , i_{dr} The stator and rotor currents component respectively (A).

 I_a The armature current of separately excited DC motor (A)

 I_f The field current of separately excited DC motor (A).

J The rotor inertia $(Kg.m^2)$.

K The machine constant (N.m/A.Wb).

LSC Load side converter.

 L_{ls} The stator leakage inductance per phase (H).

 L_{ms} The stator magnetizing inductance per phase (H).

Lasts, Lascs, Lbsas, Lbsas, Lcsas The stator-to-stator mutual inductance per phase (H).

and L_{csbs}

 L_{arar} , L_{brbr} and L_{crcr} The rotor self-inductances per phase (H).

 L_{lr} The rotor leakage inductance per phase (H).

 L_{mr} The rotor magnetizing inductance per phase (H).

Larbr, Larcr, Lbrar, Lbrar, Lcrar The rotor-to-rotor mutual inductance per phase (H).

and Lcrbr

 L_{sr} The peak value of mutual inductance between a stator and

a rotor winding per phase (H).

MPPT Maximum power point tracking.

mmf Magnetomotive force.

N_G Rotational speed of the generator shaft (rpm).

n_s DFIG stator winding number of turns per phase.

n_r DFIG rotor winding number of turns per phase.

PMSG Permanent magnet synchronous generator.

PSF Power signal feedback.

PWM Pulse width modulation.

P_t The extracted mechanical power from the turbine (W)

p The number of poles of DFIG.

P The number of pole pairs of DFIG.

 P_o The output power from doubly-fed induction generator (W)

 P_s The stator power (W).

 P_r The rotor power (W).

P_s The stator electrical output power (W)

P_r The rotor electrical (in/out) power (W)

 P_{cus} The stator copper losses (W).

 P_{cur} The rotor copper losses (W).

 P_{m} The mechanical input power (W).

 P_{max} The optimum or maximum power extracted from a wind

turbine (W).

 Q_s The stator reactive power respectively (VAR).

 Q_r The rotor reactive power respectively (VAR).

RSC Rotor side converter.

R The radius of rotor blades (m).

 R_s The stator winding resistance per phase (Ω) .

 R_r The rotor winding resistance per phase (Ω) .

 R_L The load resistance per phase (Ω) .

SCIG Squirrel cage induction generator.

SG Synchronous generator.

The slip.

TSR Tip speed ratio.

 T_t The turbine torque (N.m).

 T_e The electromagnetic torque developed by the DFIG (N.m).

T the electro-magnetic torque of separately excited DC motor

(N.m).

VAWT Vertical axis wind turbine.

VSCF Variable speed constant frequency.

 $V_{\rm w}$ The wind speed (m/s).

 v_{as} , v_{bs} and v_{cs} The applied stator voltages (V). v_{ar} , v_{br} and v_{cr} The applied rotor voltages (V).

 v_{qs} , v_{ds} , v_{qs} , v_{dr} The stator and rotor voltages component respectively (V).

 v_{ar} , v_{br} , v_{cr} The i_{ns}tantaneous value of the rotor input voltages per

phase (V).

 V_m The amplitude of the rotor input voltage per phase (V).

 $V_{\text{cut-in}}$ The cut-in wind speed of wind turbine.

V_{cut-out} The cut-out wind speed of wind turbine.

β The pitch angle of the rotor blades (degree).

 $\theta_{\rm m}$ The angle between the magnetic axes of stator phase

winding, A, and rotor phase winding (electrical degree). The angle between the q-axis of the stationary reference

frame fixed on the stator and rotating q-d axes (electric

degree).

 θ_r The angle between the q-axis of the stationary reference

frame fixed on the rotor and rotating q-d axes (electric

degree).

 λ The tip speed ratio.

 $\theta_{\rm e}$

 λ_{opt} The optimum tip speed ratio.

 ρ The air density = 1.225 kg/m3 at 15°C and normal

pressure.

 Φ The phase shift angle (in degrees).

 ψ_{as}, ψ_{bs} and ψ_{cs} The stator fluxes (Wb. turn). The stator side electric

variables.

 ψ_{ar}, ψ_{br} and ψ_{cr} The rotor fluxes (Wb. turn).

 ψ_a The armsture flux of separately excited DC motor (Wb).

 ψ_f The field flux of separately excited DC motor (Wb).

 ψ_{ds} The d-axis component of the stator flux.

 ψ_s The stator flux.

WECS Wind energy conversion system.

WRIG Wound rotor induction generator.

 ω_t The rotor angular velocity of the turbine (mechanical

rad/sec).

 ω_s The angular frequency of the voltages and currents of the

stator windings (elec.rad/s).

 ω_r The angular frequency of the voltages and currents of the

rotor windings (elec.rad/s).

 ω_m The rotor angular frequency of the generator (elec.rad/s).

 $\omega_{\it opt}$ The optimum turbine rotor speed (mec.rad/sec).

 Ω_m The mechanical angular speed of the rotor (mech.rad/s).