THE STUDY OF THE BIOLOGICAL EFFECTS OF SOME NANOPARTICLES USED IN WATER TREATMENT

Submitted By

Samah Farouk Hassan

B.Sc., (Chemistry- Zoology), Women College for Arts, Science and Education,

Ain Shams University, 2005

Diploma of Analytical and Biochemistry El-Menofia University, 2008

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

THE STUDY OF THE BIOLOGICAL EFFECTS OF SOME NANOPARTICLES USED IN WATER TREATMENT

Submitted By

Samah Farouk Hassan

B.Sc., (Chemistry- Zoology), Women College for Arts, Science and Education,

Ain Shams University, 2005

Diploma of Analytical and Biochemistry El-Menofia University, 2008

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under Supervision of:

1- Pof. Dr. Mostafa Mohamed Hassan Khalil

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University.

2-Dr. Hanaa Hussein El Sayed

Assistant Prof. of Environmental Basic Sciences, Department of Nutrition Chemistry and Metabolism, National Nutrition Institute - Ministry of Health.

Acknowledgement

First of all, I thank Allah who gave me the strength to fulfill this work.

My thanks and deep appreciation to **Prof. Dr. Mostafa M.H. Khalil** Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University, for his guidance, motivation, and support throughout my master thesis. His insight helped me to finish this research in such a good form. I am very thankful that I become one of his students.

Special and great thanks to **Dr. Hanaa Hussein El-Sayed**Assistant Professor of Environmental Sciences - Department of
Nutrition Chemistry and Metabolism- National Nutrition
Institute, for her great help, guidance, fruitful assistance,
encouragement and precious advice given throughout this study

Finally, I would like to express my special thanks to my parents, brother, sisters and friends for their kind help, continuous encouragement, understanding and support that helped me to finish my research in this form.

ABSTRACT 2016

ABSTRACT

Nanomaterial and nanoparticles have characteristics which are totally different in comparison to similar elements in bulk with dimension. Size, shape and surface area are criteria causing these differences. This study evaluated the effect of silver nanoparticles (Ag NPs) and Titanium dioxide (TiO₂ NPs) on the health of rats. Forty five adult male albino rats Sprague Dawley Strain weighing (120± 20 g) were divided into five groups each containing "nine" rats. Group (1) fed standard diet without addition of either silver nanoparticles (Ag NPs) or (TiO₂ NPs) as a normal or negative control. Group (2) fed standard diet and orally injected with 100ppm (TiO₂ NPs) <100 nm as a small size. Group (3) fed standard diet and orally injected with 100 ppm $(TiO_2 NPs) \ge 100$ nm as a large size. Group (4) fed standard diet and orally injected with 100 ppm (Ag NPs) <100 nm as a small size. Group (5) fed standard diet and orally injected with 100ppm (Ag NPs) \geq 100 nm as a large size. Each rat was housed in individual wire cage, food and water were provided regularly for "four" weeks. At the end of the experiment animals were sacrificed under ether anesthesia and blood samples were taken from hepatic portal vein. Biochemical analysis for blood and tissues (brain and liver) was done and histopathological changes in (brain, liver, lung, testis and stomach) organs exanimated. Results illustrated increase in serum liver function parameters for all investigated groups. Ag NPs were more toxic than TiO₂, and generally, small size (<100) of the two nanoparticles had more toxic effect on liver than large size (≥ 100). Results of antioxidant screening (GSH & MDA) of liver tissue matched with serum liver function

ABSTRACT 2016

which proved the harmful effect of nanomaterials on liver. Antioxidants of brain showed also effect on brain's morphology for all investigated groups. Pathological examination showed (tissue damages, bloodshed, cell necrosis and apoptosis) for all groups received the two sizes of Ag and TiO₂ NPs compared with control group. Based on these results, it was concluded that Ag and TiO₂ NPs have toxic effect on animal's health.

Keywords: Silver nanoparticles –Titanium dioxide nanoparticles –Biological effect – biochemical analysis - Rats

LIST OF CONTENTS

	Page
Acknowledgement.	
Abstract.	
List of Tables.	I
List of Figures.	III
List of Photos.	V
List of Abbreviations.	X
I. Introduction and Aim of the Work.	1
II. Review of Literature.	5
II.1.Definition of Nanotechnology.	5
II.2. Nanotechnology for Water/Wastewater	6
Purification.	
II.3. Application of Silver and Titanium	9
Dioxide nanoparticles.	
II.4. Silver Nanoparticles in Water	11
Purification	
II.5. TiO ₂ Nanoparticles in Water	13
Purification	
II.6. Biological Effects of Nano-Silver	15
II.6.1. In Vivo Toxicity	15
II.6.2. In Vitro Toxicity	19
II.7. Biological Effects of Nano-Titanium	28
Dioxide	
II.7.1. Potential Hazards of Inhalation	29
Exposure to TiO ₂ NPs	
II.7.2. Dermal Exposure to TiO ₂ NPs	31
II.7.3. TiO ₂ NPs Intake by Food	32
II.7.4. Genotoxicity of TiO ₂ NPs	34
II.7.5. Immunotoxic Effects of TiO2 NPs	35
II.7.6. Neurotoxic Effects of TiO ₂ NPs	36

II.8.Size of Nanoparticles and Effect	37
II.9.Oxidative Stress, Inflammation, and	39
Genotoxicity	
II.9.1.Oxidative Stress Generation	40
II.9.2.Inflammation	41
II.9.3.Antioxidants	42
II.9.4.DNA Damage	42
III. Materials and Methods	44
III.1. Materials	44
III.2. Biological Assessments	46
III.3. Experimental Design	48
III.4. Methods of Analysis	49
III.4.1. Biological Investigations	49
III. 4.2. Biochemical Analysis	49
III.4.3. Histopathological Examination of	60
Organs	
III. 4. 4. Statistical Analysis	60
IV. Results and Discussion	61
IV.1.Biological Investigations	61
IV.2. Biochemical Analysis	65
IV.3. Histopathological Results	96
V. Summary and conclusion	114
Recommendation	121
VI. References	122
Arabic Summary	

LIST OF TABLES

Table No.	Title	Page No.
Table	Mean ± SE of Food Intake, Body Weight Gain and	63
(1)	Feed Efficiency Ratio for Rats Received Two Size	00
	Nano- Particles From Titanium Dioxide (TiO ₂) and	
	Silver (Ag).	
Table	Mean ± SE of Alanine Aminotransferase (ALT),	
(2)	Aspartate Aminotransferase (AST), Alkaline	
	Phosphatase(ALP) and Gamma–Glutamyl	70
	Transferase (GGT) for Rats Received Two Size	
	Nano- Particles From Titanium Dioxide (TiO ₂) and	
	Silver (Ag).	
Table	Mean ± SE of Malondialdehyde (MDA),	
(3)	Glutathione (GSH), Deoxyribonucleic acid (DNA)	
	and Ribonucleic acid (RNA) in Liver of Rats	77
	Received Two Size Nano- Particles From Titanium	
	Dioxide (TiO ₂) and Silver (Ag).	
Table	Mean ± SE of Urea and Creatinine for Rats	
(4)	Received Two Size Nano- Particles From Titanium	81
	Dioxide (TiO ₂) and Silver (Ag).	

LIST OF TABLES

Table No.	Title	Page No.
Table (5)	Mean \pm SE of Malondialdehyde (MDA), Glutathione (GSH), Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) in Brain of Rats Received Two Size Nano-Particles From Titanium Dioxide (TiO ₂) and Silver (Ag).	85
Table (6)	Mean ± SE of Glucose, Hemoglobin (HB), Hematocrit (HCT) and Lactate Dehydrogenase (LDH) for Rats Received Two Size Nano- Particles from Titanium Dioxide (TiO ₂) and Silver (Ag).	90
Table (7)	Mean ± SE of Relative Weight of (Liver, Kidney, Brain, Spleen, Testes, Heart and Lung) for Rats Received Two Size Nano-Particles From Titanium Dioxide (TiO ₂) and Silver (Ag).	93

LIST OF FIGURES

Fig. No.	Title	Page No.
Figure	Food Intake, Body Weight Gain and Feed	
(1)	Efficiency Ratio (FER) with % of Change.	64
Figure (2)	Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST) with % of Change.	71
Figure	Alkaline Phosphatase (ALP) and Gamma –	
(3)	Glutamyl Transferase (GGT) with % of Change.	71
Figure (4)	Malondialdehyde (MDA), Glutathione (GSH) in Liver with % of Change	78
Figure	Deoxyribonucleic acid (DNA) and Ribonucleic	78
(5)	acid (RNA) in Liver with % of Change.	
Figure	Urea and Creatinine with % of change.	82
(6) Figure (7)	Malondialdehyde (MDA), Glutathione (GSH) in Brain with % of Change	86
Figure (8)	Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) in Brain with % of Change.	86
Figure (9)	Glucose and Lactate Dehydrogenase (LDH) with % of Change.	91
Figure (10)	Hemoglobin (HB) and Hematocrit (HCT) with % of Change.	91
Figure (11)	Relative Weight of (Liver, Kidney and Brain) with % of Change.	94
Figure (12)	Relative Weight of (Spleen, Testes) with % of Change.	94
Figure (13)	Relative Weight of (Heart, Lung) with % of Change.	95

LIST OF PHOTOS

Photo No.	Title	Page No.
Photo (1)	TEM Photo for Ag NPs Small Size	45
Photo (2)	TEM Photo for Ag NPs Large Size	45
Photo (3)	TEM Photo for TiO ₂ NPs Small Size.	45
Photo (4)	TEM Photo for TiO ₂ NPs Large Size.	45
Photo (5)	Brain of rat from (control group) showing no histopathological changes (H & E X 400).	97
Photo (6)	Brain of rat from (< 100 TiO ₂) group showing focal haemorrhage (H & E X 400).	97
Photo (7)	Brain of rat from (<100 TiO ₂) group showing necrosis of neurons and neuronophagia (H & E X 400).	97
Photo (8)	Brain of rat from (≥100 TiO ₂) group showing necrosis of neurons and neuronophagia (H & E X 400).	97
Photo (9)	Brain of rat from (≥100 TiO ₂) group showing congestion of meningeal blood vessel (H & E X 400).	97
Photo (10)	Brain of rat from (<100 Ag) group showing necrosis of neurons and congestion of meningeal blood capillaries (H & E X 400).	98
Photo (11)	Brain of rat from (<100 Ag) group showing necrosis of neurons (H & E X 400).	98
Photo (12)	Brain of rat from (≥100 Ag) group showing necrosis of neurons (H & E X 400).	98
Photo (13)	Brain of rat from (≥100 Ag) group showing cellular edema (H & E X 400).	98
Photo (14)	Liver of rat from (control group) showing the normal histological structure of hepatic lobule (H & E X 400).	100