Assessment of Vascular Endothelial Growth Factor (VEGF) as a New Non-Invasive Marker for Early Prediction of Esophageal Varices in Chronic Liver Disease Patients

Thesis
Submitted for partial fulfillment of the master degree
In Internal medicine

By

Sarah Ahmad Mohamad El Morsy

M.B.B.Ch Faculty of medicine, Cairo University

Supervised by

Dr. Yasser Bakr Mohamed

Assistant Professor of Internal Medicine Faculty of Medicine – Cairo University

Dr. Ula Mabid Al-Jarhi

Lecturer of Internal Medicine Faculty of Medicine – Cairo University

Dr. Mona Mohsen Abd El Salam

Lecturer of Clinical and chemical Pathology Faculty of Medicine – Cairo University

> Faculty of Medicine Cairo University 2016

First of all thanks to Allah who has aided me in my work and gave me the ability to complete it.

I am deeply grateful to **Dr. Yasser Bakr Mohammad,** Assistant Professor of Internal Medicine,
Faculty of Medicine, Cairo University, for his kind
supervision, continuous help, great support and valuable
time.

I am also deeply grateful to **Dr. Ula Mabid Jarhi**, lecturer of Internal Medicine, Faculty of Medicine, Cairo University, for her kind supervision, sincere directions, constant encouragement, continuous support and valuable time.

I wish to express my gratitude and special thanks to **Dr. Mona Mohsen Abd EL Slam**, lecturer of Chemical and Clinical Pathology, Faculty of Medicine, Cairo University, for the great effort she done in doing the labs and for her great support.

I would like to thank all my professors and colleagues in the department for their continuous support and unlimited help.

Finally, I would like to express my deepest thanks and gratitude to all members of my family and my friends for their real support and reassurance.

Sarah Ahmad

Abstract

Background: The gold standard screening technique for presence of esophageal varices and its risk for bleeding is upper GI endoscopy. The development of a non-invasive method for early prediction of esophageal varices and its risk of bleeding would identify high-risk patients with lesser need for expensive, risky and invasive endoscopy. VEGF is known as an important angiogenic factor and has a crucial role in portal hypertension and collateral vessels formation.

Objectives: Assessment of urinary VEGF level in cirrhotic patients as a predictor of presence and severity of esophageal varices.

Methods: 42 cirrhotic patients were randomly selected and classified into 2 groups according to the presence or absence of variceal bleeding. VEGF was measured in urine of both groups and compared to 42 healthy controls. VEGF level was corrected against urinary creatinine. Platelet count, liver function tests, abdominal ultrasonography and upper GI endoscopy were done to all patients. The association between urinary VEGF and all previous parameters as well as with clinical data was sought.

Results: Significantly lower levels of urinary VEGF were detected in cirrhotic patients with esophageal varices than those without, and both groups were lower than that of controls. By multivariable logistic regression, low VEGF, low platelet count and splenomegaly were found to be independent predictors of both the presence of large esophageal varices, and variceal bleeding. Receiver operating characteristic (ROC) curve analysis showed that platelet count $\leq 166.3 \times 10^{-3}/\mu$ L, and corrected VEGF ≤ 59.12 pg/mg were predictive of large esophageal varices with 93.1%, 86.2% sensitivity and 74.5%, 58.2% specificity respectively. While variceal bleeding could be predicted at a platelet count $\leq 153 \times 10^{-3}/\mu$ L, and corrected VEGF ≤ 45.08 pg/mg with 90.9%, 81.8% sensitivity and 72.6%, 59.7% specificity respectively.

Conclusion: Low urinary VEGF, thrombocytopenia and splenomegaly are independent risk factors for presence of large esophageal varices as well as their risk for bleeding. These variables can be used as an alternative to upper endoscopic screening after their validation by future studies.

Key words: Liver cirrhosis, portal hypertension, esophageal varices, VEGF

Table of Contents

Title	Page
Abstract	I
Table of Content	II
List of Abbreviations	III
List of Tables	VIII
List of Figures	X
Introduction and Aim of Work	1
Review of Literature:	5
• Chapter (1):Liver Cirrhosis	5
• Chapter (2): Portal Hypertension	16
• Chapter (3): Gastro-Esophygeal varices	42
• Chapter (4): Vascular Endothelial Growth	
Factor (VEGF)	
Patients and Methods	82
Results	90
Discussion and Conclusion	111
Summary	
References	
الملخص العربي	

List of Abbreviations

%	Percent
°c	Degree Celsius
×g	Times gravity unit
8-iso- PGF2a	8 iso-prostaglandin F2 alpha
ADMA	Amino acid asymmetric Dimethylarginine
ALP	Alkaline phosphatase
ALT	Alanine transaminase
Anti-LC1	Anti-liver cytosol 1
AST	Aspartate transaminase
AUC	Area under the curve
A-V shunt	Arterio- Venous shunt
CD163	Cluster of Differentiation 163
CECs	Circulating Endothelial Cells
CI	Confidence interval
СООН	Carboxylic acid
СТ	Computerized Tomography
СТР	Child-Turcotte-Pugh

ELISA	Enzyme linked immunosorbent assay
EPO	Endothelial progenitor cells
EVL	Endoscopic Variceal Ligation
EVO	Endoscopic Variceal Obturation
EVS	Endoscopic variceal sclerotherapy
FHVP	Free Hepatic Venous Pressure
FT	Fibro Test
g/dL	Gram /deciliter
GGT	Gama glutamate transferase
GOV	Gastroesophageal varices
НСС	Hepatocellular Carcinoma
HCV	Hepatitis C virus
НЕ	Hepatic Encephalopathy
HO-1	Heme oxygenase 1
HRS	Hepato-renal Syndrome
HVPG	Hepatic Venous Pressure Gradient
IGV	Isolated gastric varice
IHVR	Intrahepatic Vascular Resistance
INR	International Normalization Ratio
ISMN	Isosorbide mononitrate

IV	Intravenous
kda	Kilo- Dalton
LC	Liver Cirrhosis
LKM-1	liver-kidney microsomal type 1
LSEC	Liver sinusoidal endothelial cell
LSM	Liver Stiffness Measurement
Max	Maximum
MELD	Model for End stage Liver Disease
mEq/L	Milliequivelant/ liter
mg	milligram
Min	Minimum
ml	milliliter
mm ³	Millimeter cubic
mmHg	Millimeter mercury
MRE	Magnetic Resonance Elastography
MRI	Magnetic Resonance Imaging
NAFLD	Non Alcoholic Fatty Liver Disease
NASH	Non Alcoholic Steato-Hepatitis
Nh ₂	Amine group

nm	nanometer
NO	Nitric Oxide
NSBB	Non Selective Beta Blockers
OR	Odds ratio
OV	Oesophygeal varices
P value	Calculated probability
PC	Prothrombin concentration
Pg/mg creat.	Pecogram/milligram creatinine
PH	Portal Hypertension
PLT	Platelets
PT	Prothrombin Time
PVT	Portal Vein Thrombosis
R&D	Research and Development
ROC	Receiver operator characteristic curve
	analysis
SBP	Spontaneous Bacterial Peritonitis
SD	Standard deviation
SMAs	smooth muscle antibodys
ТВ	Tuberculosis

TE	Transient Elastography
TIPS	Transjugular intrahepatic portosystemic
	shunt
U/L	Unit/ liter
UGI	Upper Gastro-Intestinal Endoscopy
endoscopy	
U-II	Urotensin II
US	Ultrasound
VEGF	Vascular Endothelial Growth Factor
VEGFR	Vascular Endothelial Growth Factor
	Tyrosine kinase receptor
VS	versus
vWF	Von Willebrand factor
WHVP	Wedged Hepatic Venous Pressure
μg	microgram
μΙ	microliter
μm	Micrometere

List of Tables

Table	Title	Page
Table (1)	Common Etiologies of Cirrhosis	9
Table (2)	Child-Turcotte-Pugh (CTP) classification of the severity of cirrhosis	13
Table (3)	Doses, therapeutic goals and follow-up procedures for propranolol and nodalol	55
Table (4)	Vasoactive agents used in the management of acute hemorrhage	61
Table (5)	Doses, therapeutic goals and follow-up procedures for the recommended therapies	70
Table (6)	Classification of cirrhotic patients with and without varices according presence or absence of bleeding	90
Table (7)	Demographic data among the 2 studied groups	92
Table (8)	Comparison between 2 studied groups regarding clinical picture	93
Table (9)	Comparison between 2 groups of study regarding Ultrasound findings	95

Table (10)	Comparison between 2 groups of study as regard Child Pugh classification	96
Table (11)	Laboratory parameters among 2 studied groups	96
Table (12)	Relation between urinary VEGF (pg/ml); VEGF/ creat ratio(pg/mg creat) and clinical data	99
Table (13)	Relation between VEGF (pg/ml); VEGF/ creat ratio (pg/mg creat.) and laboratory finding	100
Table (14)	Comparison of Urinary VEGF (pg/ml); VEGF / Creat. Ratio (pg/mg creat) between all groups as regard presence or absence of esophageal varices	102
Table (15)	Comparison of corrected urinary VEGF (pg/mg creat) between cases with large varices and other groups	103
Table (16)	Logistic Regression for predictors of large OV	104
Table (17)	Comparison of Urinary VEGF (pg/ml); VEGF / Creat. Ratio (pg/mg creat.) among control, variceal bleeding, and no bleeding groups	107
Table (18)	Logistic Regression for predictors of variceal bleeding	108

List of Figures

Fig.	Title	Page
Fig. (1)	Development and consequences of portal hypertension in cirrhosis. Endothelial dysfunction plays important roles in the pathophysiology of portal hypertension	22
Fig. (2)	Figure 2: Portal pressure triggers endothelial dysfunction/ hyper-activation in the /+splanchnic and systemic circulation	25
Fig. (3)	Different dilution series using the stock solution	86
Fig. (4)	Standard curve generated for samples assayed	88
Fig. (5)	Classification of cirrhotic patients according presence or absence of bleeding	91
Fig. (6)	Cirrhotic cases classification according presence of esophageal varices and its size	91
Fig. (7)	Prevalence of complications in patients with esophageal varices versus patients without	94
Fig. (8)	Prevalence of Ultrasound findings among cirrhotics with varices and those without varices	95
Fig. (9)	Relation between corrected urinary VEGF and ultrasound findings	98
Fig. (10)	Receiver operating characteristic (ROC) curve analysis showing sensitivity and specificity of platelet count as a marker of large esophageal varices	105
Fig. (11)	Receiver operating characteristic (ROC) curve analysis showing sensitivity and specificity of corrected VEGF as a marker of large esophageal varices	106
Fig. (12)	Receiver operating characteristic (ROC) curve	109

Fig.	Title	Page
	analysis showing sensitivity and specificity of platelet count as a marker of variceal bleeding	
Fig. (13)	Receiver operating characteristic (ROC) curve analysis showing sensitivity and specificity of corrected VEGF as a marker of variceal bleeding	110

Introduction

Cirrhosis is the end stage of every chronic liver disease, resulting in formation of fibrous tissue, disorganization of liver architecture, and nodule formation, which interferes with liver function causing increased intrahepatic resistance and results in portal hypertension (*De Franchis*, 2010).

Portal hypertension is associated with two pathological features which are hyper-dynamic circulation and formation of porto-systemic collaterals. The opening and dilatation of collateral vessels can lead to the development of varices at various locations. Esophageal varices are one of its most common and lethal complications (*Chan*, 2009).

Gastro-esophageal varices are present at diagnosis in more than 50% of cirrhotic patients and it increases as liver disease progresses. Bleeding from esophageal varices occurs at a rate of 5–15% per year in untreated patients. Variceal rupture and bleeding carries a high risk of morbidity and mortality. Bleeding from esophegeal varices is associated with mortality rate of 20–30% which make it of significant clinical importance. Early diagnosis of