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truncated CPC collector for different operating temperature levels. 
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Figure 7.18: The monthly average energy collected per unit aperture area of the 

less truncated CPC collector for different operating temperature levels. 
119 

Figure 7.19: Surface plot of the monthly average overall efficiency of the single-

axis PTC with evacuated tube thermal receiver for different operating 

temperature levels. 
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Figure 7.20: Contour plot of the monthly average overall efficiency of the single-

axis PTC with evacuated tube thermal receiver for different operating 

temperature levels. 
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