

CHARACTERIZATION AND PERFORMANCE ANALYSIS OF SOLAR THERMAL COLLECTORS FOR LOW AND MEDIUM TEMPERATURE APPLICATIONS

By

Eng. Ahmed Aboulmagd Shawky Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

CHARACTERIZATION AND PERFORMANCE ANALYSIS OF SOLAR THERMAL COLLECTORS FOR LOW AND MEDIUM TEMPERATURE APPLICATIONS

By

Eng. Ahmed Aboulmagd Shawky Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Under the supervision of:

Prof. Dr. Adel Khalil Hassan	Prof. Dr. Ashraf Saad El-Din Sabry
Mechanical Power Engineering Department Faculty of Engineering, Cairo University	Mechanical Power Engineering Department Faculty of Engineering, Cairo University
Prof. Dr. Da	avide Del Col
Department of Inc	dustrial Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

The University of Padova, Italy

CHARACTERIZATION AND PERFORMANCE ANALYSIS OF SOLAR THERMAL COLLECTORS FOR LOW AND MEDIUM TEMPERATURE APPLICATIONS

By

Eng. Ahmed Aboulmagd Shawky Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee:
Prof. Dr. Adel Khalil Hassan, Thesis Main Advisor and Member
Prof. Dr. Ashraf Saad El-Din Sabry, Member
Prof. Dr. Mohamed Fawzi El-Refaie, Internal Examiner
Prof. Dr. Mohamed Fatouh Ahmed, External Examiner (Professor at the Mechanical Power Department, Faculty of Engineering, Helwan University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer:** Ahmed Aboulmagd Shawky Sayed

Date of Birth: 8/9/1979 **Nationality:** Egyptian

E-mail: a.aboulmagd@staff.cu.edu.eg

Phone: +20 33913519; +20 1113298385

Address: Flat # 2, Building # 12, Abdel-Dayem

Abdel-Latif street, Hadayek el-

Koppa, Cairo, Egypt.

Registration Date: 1/10/2012

Awarding Date: / /

Degree: Doctor of Philosophy

Department: Mechanical Power Engineering **Supervisors:** Prof. Dr. Adel Khalil Hassan

Prof. Dr. Ashraf Saad El-Din Sabry

Prof. Dr. Davide Del Col (Professor at the Industrial Engineering Department, Padova University, Italy)

Examiners: Prof. Dr. Adel Khalil Hassan

Prof. Dr. Ashraf Saad El-Din Sabry Prof. Dr. Mohamed Fawzi El-Refaie

Prof. Dr. Mohamed Fatouh Ahmed (Professor at the Mechanical Power Department, Faculty of Engineering, Helwan University)

Title of Thesis:

Characterization and Performance Analysis of Solar Thermal Collectors for Low and Medium Temperature Applications

Key Words:

Solar Collectors; Parabolic; Compound; Concentrator; Performance; Efficiency;

Optical; Thermal; Model

Summary:

The present thesis introduces an investigation of performance for two main types of solar thermal collectors, the compound parabolic concentrators and the parabolic trough collectors, for the use in residential, commercial and industrial applications. These collector types are studied according to the temperature level that can be obtained by utilizing proper geometrical and operating conditions, low temperature (with no or low concentration) and medium temperature (with medium concentration). A generalized mathematical model for optical and thermal behavior of solar thermal collectors is developed and applied to the different collector types. A numerical solution procedure is then proposed and applied to the developed mathematical models. Simulation outputs are validated against experimental measurements and calculations obtained from the available test-runs. Different performance indices are used to assess and compare the performance of different collector types under study.

ACKNOWLEDGMENTS

First of all, many thanks should go to my supervisors for the great support and guidance during the course of this thesis. They helped me on the selections of the topics of research and how to present the ideas in a suitable way, giving me the opportunity to extract from their deep knowledge and experience.

I would like to thank the European Union's Erasmus Mundus Programme, Action 2 Lot 1 Fatima Al-Fihri Scholarship, for the financial support during my period of stay in the University of Padova, Italy and giving me the opportunity to participate in many research activities that were crucial for my PhD work.

Last, but not least, I am very grateful to my family for the persistence and support. They devoted their time and love, encouraging me to the better.

DEDICATION

To my mother.

CONTENTS

		vledgments	i
	licati		ii
		f Contents	iii
		Tables	V
List of Figures		vi	
		elature	xiii
Abs	strac	t	XV
1	Intro	oduction	1
	1.1	General	1
	1.2	Classification of Solar Collectors	2
	1.3	Performance Analysis of Solar Collectors	11
	1.4	Applications	13
	1.5	Present Work	15
2	Lite	rature Survey	17
	2.1		17
	2.2	Selected Research Works	17
	2.3	Conclusions on the Literature Review	24
3	Ехре	erimental Apparatus	26
	3.1	Experimental Apparatus and Procedure	26
		3.1.1 Compound Parabolic Concentrator (CPC) Collector	26
		3.1.2 Single-Axis Parabolic Trough Collector	30
		3.1.3 Dual-Axis Parabolic Trough Collector	32
•	3.2	Calibration Procedure and Uncertainty Analysis	35
4	Com	pound Parabolic Concentrator Collector Model	40
	4.1	Introduction	40
	4.2	Description of the CPC Collector	41
	4.3	Mathematical Model of the CPC Collector	43
		4.3.1 Absorbed Solar Power	43
		4.3.2 Overall Heat Loss	45
		4.3.3 Net Heat Gain	47
		4.3.4 Parameter Variations along the Tube Length	49
		4.3.5 Optical Efficiency	50
		4.3.6 Thermal Efficiency	55
		4.3.7 Overall Efficiency	55
		4.3.8 Modeling in Quasi-dynamic Conditions	56
,	4.4	Solution Algorithm for the CPC Collector Model	57
		abolic Trough Collector Model	58
	5.1	Introduction	58

	5.2	Single	-Axis PTC Model	60
		5.2.1	Description of the Single-Axis PTC	60
		5.2.2	Mathematical Model of the Single-Axis PTC	61
		5.2.3	Solution Algorithm for the Single-Axis PTC Model	67
	5.3	Dual-A	Axis PTC Model	68
		5.3.1	Description of the Dual-Axis PTC	68
		5.3.2	Mathematical Model of the Dual-Axis PTC	68
			5.3.2.1 Single-Phase Flow	72
			5.3.2.2 Two-Phase Flow	73
		5.3.3	Solution Algorithm for the Dual-Axis PTC Model	74
6	Resu	ılts and	Discussions	75
	6.1	Comp	ound Parabolic Concentrator Collectors	75
		6.1.1	A Performance Analysis Case Study	75
		6.1.2	Overall Performance and Comparison to Experimental Data	76
		6.1.3	Simulation for other Arrangements and Operating Conditions	80
	6.2	Single	-Axis Tracking Parabolic Trough Collectors	91
			Simulation in Steady-State Conditions and Experimental Validation	92
			Simulation in Quasi-Dynamic Conditions	94
	6.3		Axis Tracking Parabolic Trough Collectors	97
			Results for Single-phase Flow	98
		6.3.2	Results for Two-phase Flow	100
7	Perf	ormano	ce Comparison of Solar Collectors	104
	7.1	Model	ing Extensions to New Configurations	104
		7.1.1	The Filled-Type Evacuated Tube Receiver	104
		7.1.2	Less Truncated CPC reflector Geometry	100
	7.2	Perfor	mance Comparison of Different Types of Solar Collectors	107
8	Con	clusion	s and Suggestions for Future Work	131
	8.1	Conclu	usions of the Present Work	131
		8.1.1	Compound Parabolic Concentrator (CPC) Collectors	131
		8.1.2	Parabolic Trough Collectors (PTCs)	132
	8.2	Recom	nmendations for Future Work	132
Re	feren	ces		133
Ap	pend	ices		130
_	_		ample MATLAB Codes	130
_	-		ay Tracing Diagrams	144
_	-		erformance Comparison of Solar Collectors	148
Ar	abic '	Title Pa	nge and Arabic Abstract	

LIST OF TABLES

Table 3.1:	Standard deviation among the RTDs measurements, average error and uncertainties for the whole measurement chain after calibration.	36
Table 4.1:	Calculation factors for the evacuated tube solar collector.	43
Table 5.1:	Computational parameters for the single-axis parabolic trough collector.	61
Table 5.2:	Computational parameters for the dual-axis PTC.	69
Table 6.1:	Average values of different performance parameters for the evacuated	76
	tube collector.	
Table 6.2:	Computational parameters for the second evacuated tube collector.	81
Table 6.3:	Experimental [40] and numerical results for the daily performance tests on an average basis.	89
Table 6.4:	Operating conditions of the single-axis PTC system.	91
Table 6.5:	Average values of different performance parameters for the single-axis PTC.	92
Table 6.6:	Experimental operating conditions of the dual-axis PTC (single and two-phase flows).	97
Table 6.7:	Average values of performance parameters for the dual-axis PTC (single-phase flow).	98
Table 6.8:	Average values of performance parameters for the dual-axis PTC (two-phase flow).	100
Table 7.1:	Average weather and solar irradiance data during the year 2014.	108
Table 7.2:	The parameters and operating conditions that are used for the comparison of solar collector types.	113
Table 7.3:	Average daily performance analysis of the CPC collector with evacuated tubes and different truncation levels ($T_{f,in}$ =50 °C) for the year 2014.	114
Table 7.4:	Average daily performance analysis of the single-axis parabolic trough collector with two-types of thermal receivers ($T_{f,in}$ =50 °C) for the year	115
Table 7.5:	2014. Average daily performance analysis of the dual-axis parabolic trough collector with two-types of thermal receivers ($T_{f,in}$ =50 °C) for the year 2014.	116
Table 7.6:	Average annual values of different performance indices and comparison criteria for different types of collectors.	130

LIST OF FIGURES

Figure 1.1:	An example of a solar thermal energy conversion system (Jiangsu Sunpower Solar Technology Co., Ltd.).	1
Figure 1.2:	A general classification of solar collectors.	2
Figure 1.3:	Typical efficiency curves for the most common types of solar collectors.	3
Figure 1.4:	Different collectors for different design temperatures and concentrations [3].	3
Figure 1.5:	A schematic for the unglazed flat-plate solar collector [4].	4
Figure 1.6:	An example of the swimming pool heating using the unglazed flat- plate solar collector.	4
Figure 1.7:	Main components of a flat-plate collector (From:	5
	http://www.solardimension.co.za)	
Figure 1.8:	An example of EFPC (model TS 400V from THERMO/SOLAR Žiar s.r.o.).	5
Figure 1.9:	Evacuated tube solar collector: (a) Direct flow type (b) Heat pipe.	6
Figure 1.10:	Cross sections of some ETC designs (a) Flat plate; (b) Concentric	7
riguic 1.10.	tubular; (c) Concentrating; (d) Vacuum bottle with slip-in heat exchanger.	,
Figure 1.11:	(a) Schematic cross-section of a CPC showing parabolic segments,	9
S	aperture, and receiver. (b) CPC collector concept with tubular	
	receiver.	
Figure 1.12:	Typical evacuated tube collector with a low-concentration CPC reflector [10].	8
Figure 1.13:	Solar ray tracking for a single-axis PTC.	9
Figure 1.14:	An example of a PTC with its main components (Source: Schlaich	10
	Bergermann und Partner, SBP).	
Figure 1.15:	Fresnel concentrators; (a) lens; (b) mirror.	10
Figure 1.16:	An example of a LFR (NOVA-1 solar power system. Source: NOVATEC BioSol).	11
Figure 1.17:	Typical Sankey diagram of the collector energy flow.	12
Figure 1.18:	An example of the collector efficiency curve.	13
Figure 1.19:	A solar district heating system (www.volker-quaschning.de).	14
Figure 1.20:	A solar-driven HVAC system with cold/hot thermal storage (www.camel-solar.com).	14
Figure 2.1:	The evacuated tubular-collector of Shah and Furbo [22].	18
Figure 2.1:	Cross-sections of different absober designs of Kim and Seo [23].	19
Figure 2.2:	Sectional views of the three-dimensional grid system of Han et al.	19
rigure 2.3:	[24].	19
Figure 2.4:	The filled-type evacuated tube solar collector of Liang et al. [26].	20
Figure 2.5:	The CPC collectors: (a) the 3x CPC; and (b) the 6x CPC of Li et al. [28].	21
Figure 2.6:	PTCs arrangement under the test of Jaramillo et al. [32].	22
Figure 2.7:	Prototype hybrid (PV/T) collector under the test of Rossel et al. [33].	23

Figure 2.8:	Structure of the U-type heat pipe solar receiver of Zhang et al. [36].	24
Figure 3.1:	Schematic view and flow diagram of the experimental test rig of the	27
Eigung 2 2.	CPC collector.	28
Figure 3.2:	Hydraulic loop: Storages, pumps, fluid flow meters and plate heat exchanger (heat sink).	40
Figure 3.3:	Irradiance measurements pyranometers and the anemometer.	28
Figure 3.4:	The Agilent 34970A data logger.	29
Figure 3.4.	Evacuated tube collector installed in the apparatus with CPC	29
riguite 3.3.	reflectors.	49
Figure 3.6:	Evacuated tube collector installed in the apparatus without CPC	30
riguite 3.0.	reflectors.	30
Figure 3.7:	Photo of the experimental test-rig of the single-axis PTC collector.	31
Figure 3.8:	Meteorological station. (a) Sun tracker (b) Ambient temperature and	31
riguite 3.0.	RH sensor. (c) Wind speed/direction sensor.	31
Figure 3.9:	Schematic view and flow diagram of the experimental test-rig of the	32
rigure 3.7.	single-axis PTC.	34
Figure 3.10:	The prototype of the parabolic trough linear solar concentrator with	32
8	dual-axis tracking.	
Figure 3.11:	A close view of the focal line and the tested receiver with sun image.	33
Figure 3.12:	Flat receiver geometry for the dual-axis PTC prototype.	33
Figure 3.13:	Schematic view and flow diagram of the experimental test-rig of the	35
8	dual-axis PTC collector.	
Figure 3.14:	Calibration system of the thermometers of the primary circuit at the	37
O	Department of Industrial Engineering, Padova University, Italy.	
Figure 3.15:	Sample calibration curves for RTD sensors. (a) RTD1: temperature	37
O	range from 20 to 60 °C (b) RTD3: temperature range from 120 to 150	
	°C.	
Figure 3.16:	Comparison of the two first class pyranometers (pyranometer 1 and 2)	38
	with the secondary standard pyranometer 1 measurements.	
Figure 3.17:	Difference between magnetic and Coriolis measurements and their	39
	uncertainties after calibration.	
Figure 4.1:	Illustration of the evacuated tube collector with CPC reflectors.	42
Figure 4.2:	Cross-sections of the glass evacuated tube solar collector with U-tube.	42
Figure 4.3:	Heat transfer mechanisms in the evacuated tube collector. Adapted	44
	from [19].	
Figure 4.4:	Collector equivalent thermal network model associated with the heat	45
	transfer processes.	
Figure 4.5:	(a) Fin and tube configuration. (b) Energy balance on the	47
	circumferential aluminum fin.	
Figure 4.6:	Variation of temperature along the tube length with finite difference	50
TO: 4 =	notation.	= 4
Figure 4.7:	Location and orientation of the quasi-dynamic test collector (facing 10	51
	degrees West-of-South, E 11° 53′ 30″, N 45° 24′ 39″, Padova, Italy).	
TY 4 0	Taken from Google Earth®.	- 1
Figure 4.8:	Reference geometrical parameters in the tubular collector [27].	51
Figure 4.9:	Full and truncated CPC geometry (6% height truncation).	52

Figure 4.10:	Ray tracing within the truncated CPC reflector (θ =0°). \bar{n} =0.596 and γ =1.	53
Figure 4.11:	Ray tracing within the truncated CPC reflector (θ =10°). \bar{n} =0.595 and γ =0.9501.	53
Figure 4.12:	Ray tracing within the truncated CPC reflector (θ =30°). \bar{n} =0.594 and γ =0.9521.	53
Figure 4.13:	Ray tracing within the truncated CPC reflector (θ =50°). \bar{n} =0.546 and γ =0.8722.	54
Figure 4.14:	Simplified flowchart of the software program and the solution algorithm. (a) Steady-state conditions. (b) Quasi-dynamic conditions.	57
Figure 5.1:	Schematic of a parabolic trough collector.	58
Figure 5.2:	Helioman 3/32 PTC (M.A.N Corporation, Germany).	59
Figure 5.3:	Rotating test-rig for parabolic troughs at the PSA in southern Spain.	60
Figure 5.4:	Location and orientation of the single-axis PTC (north-south oriented, E 31° 00′ 30″, N 30° 02′ 10″, Cairo, Egypt). Taken from Google Earth®.	61
Figure 5.5:	Variation of temperature along the tube length with finite difference notation.	62
Figure 5.6:	Cross-section of the receiver showing main dimensions and heat losses.	62
Figure 5.7:	Thermal network for the receiver tube of the single-axis PTC.	62
Figure 5.8:	Receiver edges and connections between receiver tubes [45]. (a) Metal retainer at receiver tube edge. (b) Connection between receiver tubes.	64
Figure 5.9:	Ray tracing results for the single-axis PTC (normal incidence) with a close view of the absorber tube.	65
Figure 5.10:	Incidence angle of beam radiation and its projections on the aperture of the single-axis PTC.	66
Figure 5.11:	Incidence angle modifier for the single-axis PTC.	66
Figure 5.12:	Simplified flowchart of the solution algorithm and procedure implemented inside the software program for the single-axis PTC.	67
Figure 5.13:	Receiver location with respect to the primary optics of the dual-axis PTC.	68
Figure 5.14:	The test receiver with flow path and parameter notations.	69
Figure 5.15:	Cross-section of the test receiver.	69
Figure 5.16:	Ray tracing results for the dual-axis PTC (normal incidence) with a close view of the absorber plate.	71
Figure 5.17:	Thermal network of the dual-axis PTC.	7 1
Figure 5.18:	Simplified flowchart of the solution algorithm and procedure implemented inside the software program. (a) Single-phase flow. (b) Two-phase flow.	74
Figure 6.1:	Variation of local temperatures along the U-tube length. (a) Collector with CPC. (b) Collector without CPC.	75
Figure 6.2:	Variation of temperature along the quarter fin length (circumferential direction) at different sections along the U-tube (a) Collector with CPC. (b) Collector without CPC.	76

Figure 6.3:	Contours of temperature variation along the quarter fin length for selected sections along the U-tube (a) Collector with CPC. (b)	76
Figure 6.4:	Collector without CPC. Overall heat loss coefficient vs. reduced temperature difference ($I = 1000 \text{ W/m2}$). (a) Collector with CPC. (b) Collector without CPC.	77
Figure 6.5:	Overall efficiency vs. reduced temperature difference ($I = 1000$ W/m2). (a) Collector with CPC. (b) Collector without CPC.	77
Figure 6.6:	Overall efficiency vs. temperature difference ($T_a = 20$ °C and $I = 1000 \text{ W/m2}$). (a) Collector with CPC. (b) Collector without CPC.	7 8
Figure 6.7:	Thermal, optical and overall efficiencies vs. reduced temperature difference ($T_a = 20$ °C and $I = 1000$ W/m2). (a) Collector with CPC. (b) Collector without CPC.	78
Figure 6.8:	Outlet fluid temperature vs. reduced temperature difference ($T_a = 20$ °C and $I = 1000$ W/m2). (a) Collector with CPC. (b) Collector without CPC.	7 9
Figure 6.9:	Calculated and experimental net heat flow rate for the collector ($T_a = 20$ °C).	7 9
Figure 6.10:	Calculated and experimental overall collector efficiency and associated percentage absolute ($T_a = 20$ °C and $I = 1000$ W/m2). a) Collector with CPC. b) Collector without CPC.	7 9
Figure 6.11:	The second collector under investigation.	80
Figure 6.12:	U-tube arrangement and fluid flow in the evacuated tube collector, 7-	80
	parallel-groups of 3-U-shape tubes in series along the header pipe.	
Figure 6.13:	Fluid flow in U-tubes with finite difference notations, three-tubes in series.	81
Figure 6.14:	Calculated and experimental overall collector efficiency ($T_a = 20$ °C and $I = 1000$ W/m2) and the associated percentage absolute error for the second collector.	82
Figure 6.15:	Input and Output Experimental Measurements for the daily test of the evacuated tube collector (July 16).	83
Figure 6.16:	Variation of incidence angle and its longitudinal and traversal components and the incidence angle modifier with time.	83
Figure 6.17:	Variation of the incidence angle modifiers with incidence angle.	84
Figure 6.18:	Thermal, optical and overall efficiency vs. time.	85
Figure 6.19:	Variation of local temperature with time for various locations of the U-tube length. Comparison with experimental results at $z = 8.7$ m.	85
Figure 6.20:	Useful heat gain for the collector vs. time. Comparison between simulation output and experimental results.	86
Figure 6.21:	Instantaneous values of the reduced temperature difference vs. time. Comparison between simulation output and experimental results.	86
Figure 6.22:	Collector instantaneous efficiency vs. time. Comparison between simulation output and experimental results and the associated error.	87
Figure 6.23:	Input—output diagram of instantaneous daily energies converted by the evacuated tube collector. Comparison between simulation output and experimental results	87

Figure 6.24:	Average daily efficiency of the test collectors (period: June-October). Comparison between experimental results and numerical outputs.	88
Figure 6.25:	Input—output diagram of average daily energies converted by the evacuated tube collector (period: June-October). Comparison between experimental and numerical results.	90
Figure 6.26:	Percentage absolute error. Bottom-left axes: error in daily average efficiency and Top-right: error in daily average output energy.	90
Figure 6.27:	Heat loss per unit length of the receiver as a function of mean absorber temperature for the single-axis PTC. Comparison with experimental results of [49].	91
Figure 6.28:	Variation of local temperatures along the reciever length for the single-axis PTC.	92
Figure 6.29:	Convection heat transfer coefficient and outlet fluid temperature vs. inlet temperature for the single-axis PTC.	93
Figure 6.30:	Thermal, optical and overall efficiencies vs. reduced temperature difference for the single-axis PTC.	93
Figure 6.31:	Input solar irradiance and weather conditions for a clear sky day, July 3, 2014.	94
Figure 6.32:	Time functions of the incidence angle of solar radiation and the incidence angle modifier for the single-axis PTC.	95
Figure 6.33:	Time functions of the optical, thermal and overall efficiencies for the single-axis PTC.	95
Figure 6.34:	Convection heat transfer coefficient and outlet fluid temperature vs. time for the single-axis PTC.	96
Figure 6.35: Figure 6.36:	Daily input-output energy conversion diagram for the single-axis PTC. Overall efficiency as a function of the reduced temperature difference obtained during testing of the dual-axis PTC with for single and two-phase flow conditions.	96 97
Figure 6.37:	Variation of local temperatures along the receiver length for the dual-axis PTC.	98
Figure 6.38:	Single-phase heat transfer coefficient and outlet fluid temperature vs. inlet temperature for the dual-axis PTC (T_a =25 °C, \dot{m}_f = 0.025 kg/s and DNI =800 W/m2).	99
Figure 6.39:	Thermal, optical and overall efficiencies vs. reduced temperature difference for the dual-axis PTC (T_a =25 °C, \dot{m}_f = 0.025 kg/s and	99
Figure 6.40:	DNI =800 W/m2). Temperature-Entropy (T-S) diagram for $T_{f,in} = 102.04$ °C, $P_{f,in} = 2.12$ bar a.	100
Figure 6.41:	Temperature-Entropy (T-S) diagram for $T_{f,in} = 118.96$ °C, $P_{f,in} = 2.12-6$ bar a.	101
Figure 6.42:	Two-phase heat transfer coefficient and vapor quality vs. operating temperature for the dual-axis PTC (T_a =25 °C, \dot{m}_f = 0.0016 kg/s and DNI =800 W/m2).	102
Figure 6.43:	Thermal, optical and overall efficiencies vs. the operating temperature for the dual-axis PTC (T_a =25 °C, \dot{m}_f = 0.0016 kg/s and DNI =800 W/m2).	102

Figure 6.44:	Two-phase heat transfer coefficient and vapor quality vs. DNI for the dual-axis PTC (T_a =25 °C, \dot{m}_f = 0.0016 kg/s and $P_{f,in}$ =2.123 bar a).	100
Figure 6.45:	Two-phase heat transfer coefficient and vapor quality vs. mass flow rate for the dual-axis PTC (T_a =25, °C DNI =800 W/m2 and $P_{f,in}$ =2.123 bar a).	103
Figure 7.1:	Cross-section of the filled-type evacuated tube receiver.	103
Figure 7.2:	Thermal network of the filled-type evacuated tube receiver.	104
Figure 7.3:	Comparison between the overall efficiency of the filled-type and the fin-type evacuated tube receivers at different operating temperatures.	105
Figure 7.4:	Full and truncated CPC geometry (33% height truncation).	106
Figure 7.5:	Ray tracing within the truncated CPC reflector for different incidence angles.	107
Figure 7.6:	Monthly average solar irradiance data (DNI, DHI and GHI) for the year 2014.	109
Figure 7.7:	Monthly average ambient temperature data for the year 2014.	110
Figure 7.8:	Monthly average wind speed data for the year 2014.	110
Figure 7.9:	Monthly average input energy based on the global solar irradiance on a 30° tilted surface (stationary) facing south.	111
Figure 7.10:	Monthly average input energy based on the solar irradiance on a horizontal north-south single-axis tracking PTC.	111
Figure 7.11:	Monthly average input energy based on the solar irradiance on a dual-axis tracking PTC.	112
Figure 7.12:	Monthly average input energy based on the solar irradiance on a dual-axis tracking PTC.	112
Figure 7.13:	Surface plot of the monthly average overall efficiency of the highly truncated CPC collector for different operating temperature levels.	117
Figure 7.14:	Contour plot of the monthly average overall efficiency of the highly truncated CPC collector for different operating temperature levels.	117
Figure 7.15:	The monthly average energy collected per unit aperture area of the highly truncated CPC collector for different operating temperature levels.	118
Figure 7.16:	Surface plot of the monthly average overall efficiency of the less truncated CPC collector for different operating temperature levels.	118
Figure 7.17:	Contour plot of the monthly average overall efficiency of the less truncated CPC collector for different operating temperature levels.	119
Figure 7.18:	The monthly average energy collected per unit aperture area of the	119
-	less truncated CPC collector for different operating temperature levels.	
Figure 7.19:	Surface plot of the monthly average overall efficiency of the single- axis PTC with evacuated tube thermal receiver for different operating temperature levels.	120
Figure 7.20:	Contour plot of the monthly average overall efficiency of the single-axis PTC with evacuated tube thermal receiver for different operating	120
	temperature levels.	