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Summary:

The present thesis introduces an investigation of performance for two main types of
solar thermal collectors, the compound parabolic concentrators and the parabolic
trough collectors, for the use in residential, commercial and industrial applications.
These collector types are studied according to the temperature level that can be
obtained by utilizing proper geometrical and operating conditions, low temperature
(with no or low concentration) and medium temperature (with medium
concentration). A generalized mathematical model for optical and thermal behavior
of solar thermal collectors is developed and applied to the different collector types.
A numerical solution procedure is then proposed and applied to the developed
mathematical models. Simulation outputs are validated against experimental
measurements and calculations obtained from the available test-runs. Different
performance indices are used to assess and compare the performance of different
collector types under study.
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