Effect Of Mini Implants Number On Muscle Activity in Implant Supported Mandibular Overdentures

Thesis submitted to the Faculty of Dentistry
Ain Shams University, for the Partial Fulfillment of the
requirement for the Master Degree in Oral and Maxillofacial
Prosthodontics

By **Salma Ibrahim Mohamed El-Magraby**

B.D.S, 2005 Ain Shams University

Faculty of Dentistry Ain Shams University 2010

Supervisors

Dr.Marwa Ezat Sabet

Associate Professor of Prosthodontic Faculty of Dentistry, Ain Shams University

Dr.Magdy Eid Mohamed

Associate Professor of Prosthodontic Faculty of Dentistry, Ain Shams University

Dr. Sahar Fathi Ahmed

Associate Professor of physical medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

ير عدد الغرسات صغيرة القطر الداعمة للأطقم الكاملة المحمولة السفليه على النشاط العضلى الكهربي

رسالة مقدمة لقسم الاستعاضة الصناعية بكلية طب الأسنان جامعة عين شمس للحصول على درجة الماجستير في الأستعاضة الصناعية للفم والوجة والفكين

مقدمة من الطبيبة/ سلمى ابراهيم محمد المغربى الطبيبة/ سلمى ابراهيم محمد المغربى الكالوريوس طب وجراحه الفم والأسنان 2005 جامعة عين شمس

كلية طب الأسنان جامعة عين شمس 2010

/ . .

استاذ مساعد بقسم الأستعاضة الصناعية كلية طب الأسنان جامعة عين شمس

. . بد محمد

استاذ مساعد بقسم الأستعاضة الصناعية كلية طب الأسنان جامعة عين شمس

/...

استاذ مساعد بقسم الطب الطبيعي والروماتيزم والتأهيل كليه طب جامعة عين شمس

Acknowledgment

First of all, I wish to express my deep thanks, sincere gratitude to **ALLAH**, who always helps me, care for me and gave me the ability to accomplish this thesis.

I would like to express my deep appreciation and gratitude to **Dr.**Marwa Ezat Sabet, Assoc. Professor of Prosthodontics, Faculty of

Dentistry, Ain Shams University for her valuable guidance, constant
encouragement, meticulous supervision, constructive comments,
insistence on reaching the most perfect form and for her endless
understanding and patience which gave me the push to finish this
study.

I am extremely grateful to **Dr. Magdy Eid Mohamed,** Assoc. Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, in spite of his great responsibilities he always find the time to support, guide and encourage me. I was also fortunate to carry out this work under his supervision and I would like to declare how much I learnt from him.

I would like to thank **Dr. Sahar Fathi Ahmed**, Assoc. professor of physical medicine, Rheumatology and Rehabilitation, Faculty of Medicine Ain Shams University for her unlimited support and great help through out my study.

I would also like to express my appreciation and thanks to all professors and staff members of the prosthodontics department, Faculty of Dentistry, Ain Shams University, for their encouragement and support.

Words can never express my sincere thanks to my parents for every thing through out the years and their encouragement, love, endless care and moral support when I was in most need of it.

My great thanks to all my dear friends and all who offered me any kind of encouragement wishing them the best of all.

Last but not least. I would like to thank all my patients and every one who had shared in the accomplishment of this work.

<u>Dedication</u>

To my dear parents, whose prayers, love and support, Make everything possible.

List of contents

	Page
Introduction	1
Review of literature	3
I) Problem of residual ridge reduction	3
II) Management of the mandibular Compromised ridge.	5
1) Preventive prosthodontics.	5
2) Surgical rehabilitation.	6
a) Ridge extension surgeries (vestibuloplasty).	6
b) Augmentation surgeries.	7
c) Implants	8
III) Implant supported overdentures.	9
- Advantages	11
- Disadvantages	11
- Classification	12
IV) Mini – implants.	13
V) EMG (Electromyographic evaluation)	22
1- (Electromyography introduction)	22
2-Electromyography and its application in dentistry.	24
3-Electrodes and signal detection.	27
4-Limitation of EMG.	29

5-Factors affecting the electromyographic activity of the	
masticatory muscles.	
a) Patient's related factor:	
1. Age.	31
2. Systemic condition and systemic disease.	32
3. Patient and head position	32
4. Presence of teeth.	33
5. Tempromandibular joint (T.M.J)	33
6. Nocturnal muscle activity.	34
7. Thickness of the overlying soft tissue.	35
8. Effect of food nature on muscular activity.	35
b) Factors related to the prosthesis.	
1. Type of prosthesis.	36
2. Retention and stability.	36
3. Vertical dimension and occlusion.	37
Aim of the study	39
Material and method	
Results	65
Discussion	81
Summary	
Conclusions	
References	
Arabic Summary	

List of figures

Figure		Page
Fig. 1	Mandibular edentulous ridge	46
Fig. 2	Radiographic stent with two metal balls at the	46
	canine area.	
Fig. 3	Digital panoramic radiograph with edentulous	46
	upper and lowe arches showing the two metal	
	balls	
Fig. 4	Screw type one piece implant with 2.4mm	47
	diameter and 13 mm length	
Fig. 5	Modified Radiographic stent in the	47
	patient 's mouth to be used	
	surgical stent.	
Fig. 6	Marking the sites of implants	47
Fig. 7	Tissue punch	50
Fig. 8	Use of pilot drill	50
Fig. 9	Use of finger driver.	50
Fig. 10	Use of winged thumb wrench.	51
Fig. 11	Use of ratchet wrench and adapter	51
Fig. 12	winged and ratchet wrench	51
Fig. 13	Five implant installation	52
Fig. 14	Metal housing with rubber o-ring.	54
Fig. 15	Metal housings on ball heads of the implants	55
Fig. 16	Secondary impression	55

Fig. 17	Relief of fitting surface of lower denture	55
	opposite to implant heads	
Fig. 18	Elastomeric shim	56
Fig. 19	Elastomeric shim used to blockout undercuts	56
	under the ball head.	
Fig. 20	Metal housings on the ball parts of two	56
	implants	
Fig. 21	Two metal housings picked up in the denture	57
Fig. 22	Electromyographic equipment	59
Fig. 23	Postioning of the surface electrodes	60
Fig. 24	The conductive gel	60
Fig. 25	Electrodes fixed to the patient's face with	61
	adhesive strips.	
Fig. 26	Metal housing fitted to the ball part of implant	61
	in the midline	
Fig. 27	The third metal housing in midline picked up in	62
	the denture	
Fig. 28	The last two metal housings placed on the ball	62
	parts of the two peripheral implants	
Fig. 29	The denture after pick up of the last two metal	63
	housings	
Fig. 30	The denture after removing the metal housing	64
	in the midline.	

Fig. 31	The metal housing in the midline was picked up again.	64
Fig. 32	The finished denture in patient s mouth	64
Fig. 33	Mean total muscle activity during maximum clenching in the four situations	68
Fig. 34	Mean total muscle activity during maximum clenching in the two and five implants engaged by the denture.	70
Fig. 35	Mean total muscle activity during chewing soft food in four situations	73
Fig. 36	Mean total muscle activity during chewing soft food in the Two and five implants engaged by the denture.	75
Fig. 37	Mean total muscle activity during chewing hard food in four situations	78
Fig. 38	Mean total muscle activity during chewing hard food in the Two and five implants engaged by the denture	80

List of tables

Table No.	Description	Page
Table 1	The means , standard deviation (SD)	66
	values and results of ANOVA tests for	
	comparison between maximum clenching	
	(Amplitude / turn) in the four situations	
Table 2	The means , standard deviation (SD)	68
	values and results of Student's t- test for	
	the comparison between maximum	
	clenching(Amplitude / turn) in two and	
	five implants situations	
Tables 3	The means, standard deviation (SD)	71
	values and results of ANOVA test for	
	comparison between muscle amplitude	
	with soft food in the four situations.	
Table 4	The means, standard deviation (SD)	73
	values and results of Student's t- test for	
	the comparison between muscle amplitude	
	with soft food in the two and five implants	
	situations.	
Table 5	The means, standard deviation (SD)	76
	values and results of ANOVA tests for the	

	comparison between muscle amplitude with hard food in the four situations.	
Table 6	The means, standard deviation (SD) values and results of Student's t- test for the comparison between muscle amplitude with hard food in the two and five implants situations.	78

Introduction

Many edentulous patients wearing conventional complete dentures are dissatisfied with their mandibular dentures. The unfavourable distribution of occlusal forces on their denture bearing area results in increased rate of bone resorption which inturn affects denture stability, retention and patient comfort. Thus, with the introduction of endosseous dental implants new modalities have been introduced for the management of edentulous patients. Implant supported overdentures optimize stress distribution and minimize both the forces transmitted to the implants and the ridge. This type of restoration decreases the denture movements, enhance masticatory function, proprioception, phonetics, patients comfort and reduces both trauma to the underlying tissues and rate of bone resorption.

The use of standard diameter implant to support an over denture often requires ridge augmentation procedure in order to place the implant in bone of sufficient volume. Mini dental implants formerly used as only transitional implant can now be used for other applications including use in areas of limited bone, limited space, in physically impaired patients, and with patients who have limited finances. Mini implants reduce bleeding, decrease postoperative discomfort, shorten healing time and can provide immediate loading.

Inspite of their previous advantages mini dental implants are less stable under lateral forces than conventional implants due to their smaller diameter. Trying to overcome this disadvantages, it is