

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

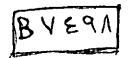
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Ain Shams University
Faculty of Girls
For
Arts, Science and Education

STRUCTURE AND PHYSICAL PROPERTIES OF CADMIUM GALOSELENIDE FILMS AND THE OPTIMUM CONDITIONS FOR SUITABLE ELECTRONIC APPLICATIONS

A Thesis

Submitted For The Ph.D. Degree of Philosophy In Science (Physics)

Ву

Eman Hashem Alry Hassan

Master in Science

Supervised BY

Prof. Dr. M.M.H. EI-NABY

Physics Department Faculty for Girls Ain Shams University Prof. Dr. T.A. HINDIA National Research Center

Dr. H.S. SOLIMAN

Ass. Prof. Physics Department Faculty of Education Ain Shams University Dr. H.M. ABO DORRA

Ass. Prof. Physics Department Faculty for Girls Ain Shams University

July 1995

Ain Shams University

Faculty of Girls for

Arts, Science and Education

Name of Student: EMAN HASHEM ALY HASSAN

Master In Science

Title of Thesis

: Structure and Physical Properties of Cadmium Galoselenide Films and The Optimum Conditions for Suitable Electronic Applications.

Supervised by:

Approved

Prof. Dr. M.M.H. EI-NABY

Physics Department

Faculty of Girls - Ain Shams University

Prof. Dr.T.A. HINDIA

National Research Center

Dr. H.S. SOLIMAN

Ass. Prof. Physics Department

Faculty of Education

Ain Shams University

Dr. H.M ABO DORRA

Ass. Prof. Physics Department

Faculty of Girls - Ain Shams University

CONTENTS

	PAGE
LIST OF FIGURES	`
LIST OF TABLES	
ACKNOWLEDGEMENT	
ABSTRACT	
SUMMARY	
CHAPTER I : INTRODUCTION AND LITERATURE REVIEW	
1.1) Introduction	1
1.2) Growth of CdGa ₂ Se ₄ Crystals	3
1.3) Structural Characterization of CdGa ₂ Se ₄	4
1.4) Aspects of The Band Structure of CdGa ₂ Se ₄	5
1.5) Optical Properties of CdGa ₂ Se ₄	9
1.6) Transport Properties of CdGa ₂ Se ₄	16
CHAPTER II : THEORETICAL BACKGROUND	
2.1) Structure Features of AB ₂ B ₄ Compounds	22
2.1.1- Structure Features of CdGa ₂ Se ₄	26
2.2) Theoretical Determination of the optical constants of	
thin films	26
a- Bennett and Booty method	28
b- Abelés and Théye's method	29
c- Algebraic inversion methods.	30
d- Envelope methods	30
2.3) Activation Energies For Electronic Conduction	31
2.3.1- Intrinsic Semiconductor	31

2.3.2- Extrinsic Semiconductor	32
I- Uncompensated Case	32
II- Compensated Case	33
2.3.3- Pseudo-Intrinsic or non-extrinsic conduction	35
2.3.4- Meyer-Neldel rule	37
2.4) Thermoelectric Power	39
2.5) Heterojunctions	40
CHAPTER III : EXPERIMENTAL TECHNIQUES	
3.1) Preparation of CdGa ₂ Se ₄ in Bulk form	44
3.2) Preparation of Thin Films of CdGa ₂ Se ₄	45
3.2.1- Cleaning of the substrate surface.	48
3.2.2- Deposition technique	48
3.3) Film Thickness Measurement	50
3.1.1- Quartz crystal thickness monitor	50
3.3.2- Multiple beam interferometry	51
3.3.3- Envelope method	53
3.4) Structure Characterization Techniques	55
3.4.1- X-ray diffraction	55
3.4.2- Electron microscopy technique	56
3.4.2.1- Preparation of CdGa ₂ Se ₄ thin films for electron	
microscope examination	56
3.5) Determination of The Optical Constants of Absorping	
Films on Transparent Substrates	57
3.5.1- The transmittance at normal light incidence	58
3.5.2- The reflectance at normal light incidence	58
3.5.3- Computing the optical constants of thin films.	59

3.6) Electrical Resistivity Measurements	64
3.7) Thermoelectric Power Measurements	65
3.8) CdGa ₂ Se ₄ /Si Heterojunctions	69
3.8.1- Preparation of CdGa ₂ Se ₄ /Si heterojunctions	69
3.8.2- Current-voltage measurements of heterojunctions	69
CHAPTER IV : STRUCTURE CHARACTERIZATION OF	
CdGa ₂ Se ₄	
4.1) Structure Investigation of CdGa ₂ Se ₄ Ingot Material	71
4.2) Structure Characterization of As-deposited CdGa ₂ Se ₄	
Thin Films	77
4.3) Effect of Heat Treatment on the Structure Charac-	
terization of CdGa ₂ Se ₄ Thin Films	82
4.4) Effect of Heat Treatment on the Crystallite Size of	
CdGa ₂ Se ₄ Thin Films	87
CHAPTER V : OPTICAL PROPERTIES OF CdGa2Se4 THIN	
FILMS	
5.1) The Spectral Distribution of Transmittance and	
Reflectance	99
5.2) The Spectral Distribution of Absorption Coefficient	103
5.3) The Spectral Distribution of the Refractive Index and	
the Dielectric Constant.	109
CHAPTER VI : TRANSPORT PROPERTIES OF CdGa2Se4	
THIN FILMS	
6.1) The Electrical Conductivity of CdGa ₂ Se ₄ Thin Films	116

6.1.1- Current-voltage characteristics of CdGa ₂ Se ₄ thin films	116
6.1.2- The volume and surface conductivities of CdGa ₂ Se ₄ thin	
films	120
6.1.3- The electrical conductivity of CdGa ₂ Se ₄ in bulk form	123
6.1.4- The effect of thickness on the surface electrical	
conductivity of CdGa ₂ Se ₄ thin films	126
6.1.5- The effect of annealing on surface electrical conductivity	
of CdGa ₂ Se ₄ thin films	131
6.2) The Thermoelectric Power of CdGa ₂ Se ₄ Thin Films	137
6.3) The Electrical Characteristics of p-CdGa ₂ Se ₄ /n-Si	
Heterojunctions	145
GENERAL CONCLUSIONS	162
REFERENCES	168
ARABIC SUMMARY	

LIST OF FIGURES

- Fig. (1.1): The model of the valence band of CdGa₂Se₄ at the Γ point of the Brillouin zone (Δ_{SO} : spin-orbit interaction).
- Fig. (1.2): Transmission spectra of CdGa₂Se₄ grown from different starting materials (a) and two binary compounds of CdSe and Ga₂Se₃ with stoichiometric or nonstoichiometric compositions (b).
- Fig. (1.3): Temperature dependence of electrical conductivity and thermoelectric power for CdGa₂Se₄ single crystal.
- Fig. (2.1): Chalcopyrite family and related compounds in which the individual atomic species may be replaced by others of similar valence.
- Fig. (2.2): Defect chalcopyrite structure of CdGa₂Se₄.
- Fig. (2.3): Schematic energy level diagram for a solid in which the dominant electron and hole states are labelled (m) and (q) respectively.
- Fig. (2.4): (a) Energy-band diagram for two isolated n- and p-type semiconductors.
 - (b) Energy -band diagram of p-n heterojunction at equilibrium according to Anderson model.
- Fig. (3.1): Rotating furnace.
- Fig. (3.2): Schematic diagram of coating system.
- Fig. (3.3): Typical interferometer arrangement.
- Fig. (3.4): Schematic diagram of multiple-beam interferometry.
- Fig. (3.5): Fringes produced by multiple-beam interferometry across a film substrate step.
- Fig. (3.6): Simplified optical path of the V-W specular reflection;
 Schematic (A) in the V case and (B) in the w case.
- Fig. (3.7): Flow chart diagram of the program used for the optical constants calculations.

- Fig. (3.8) : Plot of the variance versus refractive index, n for different values of absorption index, k [Γ_{exp}, R_{exp} and t/λ are kept constant].
- Fig. (3.9) : Schematic diagram of the electrical circuit for measuring the film resistance.
- Fig. (3.10) : Schematic diagtram of the circuit used for measuring the electromotive force.
- Fig. (3.11) : Sketch of CdGa₂Se₄ /Si heterojunction.
- Fig. (3.12) : The electrical circuit used for measuring the current-voltage characteristics of heterojunction.
- Fig. (4.1) : The atomic scattering factor, for (a) Ga, (b) Se and c) Cd element plotted against $\sin \theta/\lambda$.
- Fig. (4.2) : (a) The Debye-Scherrer pattern for CdGa₂Se₄ in powder form.
 (b) The calculated relative intensities of X-ray diffraction pattern of CdGa₂Se₄ in powder form (CuK_α line was used).
- Fig. (4.3) : XRD pattern of as-deposited CdGa₂Se₄ film of thickness 580 nm.
- Fig. (4.4-6) : Electron microscope diffraction patterns of as-deposited CdGa₂Se₄ thin films of thicknesses 30, 40 and 50 nm respectively.
- Fig. (4.7-9) : TEM micrograph as-deposited CdGa₂Se₄ thin films of thicknesses 30, 40 and 50 nm respectively [magnification = 25000 X].
- Fig. (4.10) : XRD patterns of CdGa₂Se₄ films of 580 nm thick : (a) as-deposited film; and films annealed at (b) 473 K, (c) 573 K, (d) 623 K, and (e) 673 K, (f) XRD pattern of CdGa₂Se₄ in powder form.
- Fig. (4.11) : (a-c) XRD patterns of CdGa₂Se₄ films of nearly equal thicknesses ≅ 270 nm deposited at substrate temperatures of (a) 300 K, (b) 523 K and (c) 573 K, (d) XRD pattern of CdGa₂Se₄ in powder form.
- Fig. (4.12,13) : Electron microscope diffraction patterns of $CdGa_2Se_4$ film of thickness 35 nm deposited at T_S = 300 K and 573 K respectively.

- Fig. (4.14) : X-ray line broadening of the (112) reflection for CdGa₂Se₄ in powder form.
- Fig. (4.15) : X-ray line broadening of the (112) reflection for CdGa₂Se₄ thin film of thickness 580 nm annealed at T_A = 598 K.
- Fig. (4.16) : X-ray line boradeining of the (112) reflection for CdGa₂Se₄ thin film of thickness 580 nm annealed at T_A = 623 K.
- Fig. (4.17) : X-ray line boradening of the (112) reflection for $CdGa_2Se_4$ thin film of thickness 580 nm annealed at $T_A = 673$ K.
- Fig. (4.18) : X-ray line broadening of the (112) reflection for $CdGa_2Se_4$ thin film of thickness 270 nm prepared at $T_s = 573$ K.
- Fig. (4.19,20) : TEM micrographs of $CdGa_2Se_4$ thin film of thickness 35 nm deposited at T_s = 300 and 573 K respectively [magnification = 25000 X].
- Fig. (5.1) $\frac{1}{2}$ The spectral behaviour of the transmittance $T(\lambda)$ and reflectance $R(\lambda)$ at normal incidence for as-deposited CdGa₂Se₄ films of different thicknesses.
- Fig. (5.2) : The spectral behaviour of the transmittance $T(\lambda)$ and reflectance $R(\lambda)$ at normal incidence for $CdGa_2Se_4$ films of different thicknesses deposited onto preheated substrates $T_S = 573$ K.
- Fig. (5.3) : The spectral behaviour of the transmittance $T(\lambda)$ and reflectance $R(\lambda)$ at normal incidence for $CdGa_2Se_4$ films of different thicknesses and annealed at $T_A = 623$ K for two hours.
- Fig. (5.4) : The spectral distribution of absorption index, k(λ) of CdGa $_2$ Se $_4$ films
 - (A) as-deposited.
 - (B) [o] $T_A = 623$ K (open circle) and [•] $T_S = 573$ K (solid circle).

- Fig. (5.5) : The spectral behaviour of the absorption coefficient, α
 - (A) as-deposited.
 - (B) Same as in Fig. 5.4(B).
- Fig. (5.6) : $(\alpha h v)^{1/2}$ plotted against (hv) :
 - (A) as-deposited
 - (B) Same as in Fig. 5.4(B).
- Fig. (5.7) : $(\alpha h v)^2$ plotted against (hV) :
 - (A) as-deposited
 - (B) Same as in Fig. 5.4(B).
- Fig. (5.8) : Log (α hv) plotted against log (hv-Eg) for as-deposited CdGa₂Se₄ thin films
- Fig. (5.9) : The spectral distribution $n(\lambda)$ of CdGa₂Se₄ films :
 - (A) as-deposited
 - (B) Same as in Fig. 5.4(B).
- Fig. (5.10) : $(n^2-1)^{-1}$ plotted against λ^{-2} in wavelength range 540-840 nm :
 - (A) as-deposited
 - (B) Same as in Fig. 5.4(B).
- Fig. (6.1) : Log I vs. Log V for a sample C_1 of thickness 326.8 nm deposited at $T_S = 573$ K. The measurement was performed for Au/CdGa $_2$ Se $_4$ /Au configuration at room temperature.
- Fig. (6.2) : Log I vs $V^{1/2}$ in high field region for the sample C_1 .
- Fig. (6.3a): The temperature dependence of the conductivity for the sample C_1 in sandwich configuration.
- Fig. (6.3b): The temperature dependence of the condutivity for the sample C₁ in coplanar configuration.
- Fig. (6.4) : The temperature dependence of the conductivity for CdGa₂Se₄ in bulk form.