Role of Some Growth Factors and Oxidative Stress in the Pathogenesis of Diabetic Retinopathy

Thesis
Submitted for Partial Fulfillment of Master Degree in Pharmaceutical Sciences
(Biochemistry)

By

Rodyna Mohamed Hany El-Eleamy

Demonstrator in Biochemistry Department Faculty of Pharmacy Misr International University

B.Ph.Sc., Ain Shams University, 2003

Under supervision of

Prof. Dr. Hala Osman El-Mesallamy Prof. Dr. Tarek Ahmed El-Maamoun

Professor of Biochemistry
Vice Dean for Community and
Environmental Affairs and
Head of Biochemistry Department
Faculty of Pharmacy
Ain Shams University

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Lamiaa Nabil Hammad

Associate Professor of Biochemistry and Head of Biochemistry Department Faculty of Pharmacy Misr International University

Ain Shams University 2009

Acknowledgments

First and foremost, Thanks to **GOD**.

I am much honored to have **Prof. Dr. Hala El-Mesallamy**, Professor of Biochemistry, Vice Dean for Community and Environmental Affairs and Head of Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, to whom I am indebted for her proposal of the point. I would like to offer her my heartfelt gratitude, and sincere appreciation for her enlightening thoughts, valuable supervision, kind co-operation, continuous help, motivation, efforts in revising the manuscript, and the inspiration she extended to put this work in the present form. May GOD bless her, grant her all the best and may all her dreams and hopes for the future come true.

Words cannot express my deep gratitude and sincere appreciation to **Dr. Lamiaa Hammad**, Associate Professor and Head of Biochemistry Department, Faculty of Pharmacy, Misr International University. I would like to thank her for her active supervision, constructive criticism, useful comments, and precious guidance throughout the work. May GOD grant her success and happiness.

I would like to extend my cordial appreciation to **Prof. Dr. Tarek El-Maamoun**, Professor of Ophthalmology, Faculty of Medicine, Ain-Shams University, for his generous help, precious guidance, unlimited effort in clinical examination of the studied groups, assistance in collecting the required samples, and encouragement to finish this work. May GOD grant him all the best.

I would like to thank my colleagues at **Misr International University** for their continuous support and generous assistance.

Last but not the least; I would like to thank my husband, who have shared all moments of the long journey I've taken, my mother and brother for being there for me all along the road ahead, and finally my father's soul, whose spirit kept me moving when I needed to give up.

List of Contents

List of Contents i
List of Abbreviations v
List of Figuresix
List of Tablesxiii
Introduction and Aim of the Work 1
Review of Literature 3
* Prevalence of diabetic retinopathy4
* Classification of diabetic retinopathy6
 Non-proliferative diabetic retinopathy
* Pathophysiology of diabetic retinopathy8
* Pathogenesis of diabetic retinopathy10
 Endothelial function and dysfunction. Biochemical and molecular mechanisms implicated in the pathogenesis of diabetic retinopathy. *Increased polyol pathway flux. *Increased hexosamine pathway flux. *Increased protein kinase-C activation. *Increased advanced glycation end products formation. *Increased production of reactive oxygen species.
* Growth factors-induced angiogenesis in diabetic retinopathy23
• Vascular endothelial growth factor24

* Adhesion molecules-induced vascular endothelial dysfunction in diabetic retinopathy
* Oxidative stress and diabetic retinopathy34
• Superoxide dismutase as an anti-oxidant enzyme system
* Predictors for the development and progression of diabetic retinopathy
 Glycemic control
* Treatment strategy for diabetic retinopathy43
 Laser photocoagulation
* Pathogenesis of proliferative vitreoretinopathy47
Subjects and Methods 49
A) Study groups49
B) Samples

 C) Methods Determination of fasting plasma glucose concentration Determination of glycated hemoglobin % in whole blood Determination of serum creatinine concentration Determination of serum total cholesterol concentration Determination of serum triglyceride concentration Determination of serum high density lipoprotein cholesterol concentration 	54 56 58 60
Calculation of serum low density lipoprotein cholesterol concentration	
Determination of erythrocytic superoxide dismutase enzyme activity	64
Determination of serum & vitreous human vascular endothelial growth factor	65
Determination of serum & vitreous soluble vascular cell adhesion molecule-1	71
Statistical Analysis	77
Results	78
- Clinical characteristics of the studied groups	78
- Fasting plasma glucose and glycated hemoglobin levels in the studied groups	79
- Serum creatinine levels in the studied groups	81
- Lipids profile for the studied groups	82
- Erythrocytic superoxide dismutase enzyme activity in the studied groups	87

 Serum and vitreous vascular endothelial growth factor levels in the studied groups 	88
 Serum and vitreous soluble vascular cell adhesion molecule-1 levels in the studied groups 	90
- Correlations between some of the measured parameters	92
- Summary of the results of the present study	97
Discussion	00
Discussion	98
Summary and Conclusion	
	123
References	
Appendix	152
	152
Appendix	152
Appendix	152
Appendix	152

List of Abbreviations

ADP: Adenosine-5`-diphosphate

AGEs: Advanced glycation end-products

ALR: Aldose reductase

Ang II: Angiotensin –II

ATP: Adenosine -5`-triphosphate

BMI: Body mass index

BUN: Blood urea nitrogen

cAMP: Cyclic adenosine-5`- monophosphate

CE: Cholesterol esterase

CO_x: Cholesterol oxidase

CRVO: Central retinal vein occlusion

CTGF: Connective tissue growth factor

Cu-Zn-SOD: Copper and zinc containing superoxide dismutase

DAG: Diacylglycerol

DCCT: Diabetes control and complications trial

DHAP: Dihydroxy acetone phosphate

DM: Diabetes mellitus

DME: Diabetic macular edema

DR: Diabetic retinopathy

ECM: Extracellular matrix

ECSOD: Extracellular superoxide dismutase

eNO: Endothelium derived nitric oxide

ELISA: Enzyme linked-immuno-sorbent assay

ERMs: Epiretinal membranes

ETDRS: Early treatment diabetic retinopathy study

Fe-SOD: Iron containing superoxide dismutase

FGF-4: Fibroblast growth factor-4

Flk-1: Fetal like kinase-1

Flt-1: Fms-like tyrosine kinase-1

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase

GC: Good glycemic control

GFAT: Glutamine: fructose 6 phosphate amidotransferase

GK: Glycerol kinase

GLUT-1: Glucose transporter-1

GO: Glucose oxidase

GPO: Glycerylphosphate oxidase

GSH: Reduced glutathione

GSSG: Oxidized glutathione (glutathione disulfide)

GTP: Guanine-5`-triphosphate

HbA₁c: Glycated hemoglobin

HbA₀: Non-glycosylated hemoglobin

HDL-C: High density lipoprotein cholesterol

HGF: Hepatocyte growth factor

HIF: Hypoxia-inducible factor

HMP: Hexosamine monophosphate

HRP: Streptavidin-peroxidase

ICAM: Intercellular adhesion molecule

IGF: Insulin like growth factor

IL: Interleukin

iNOS: Inducible nitric oxide synthase

IRMA: Intra-retinal microvasculature abnormalities

KGF: Keratinocyte growth factor

LCF: Lipid clearing factor

LDL-C: Low density lipoprotein cholesterol

MCP-1: Monocyte chemotactic protein-1

MMPs: Matrix metalloproteases

Mn-SOD: Manganese containing superoxide dismutase

Na₂EDTA: Disodium ethylene diamine tetra acetic acid

NADPH: Nicotinamide dinucleotide phosphate

NBT: Nitroblue tetrazolium

NF-\kappaB: Nuclear factor kappa beta

NO: Nitric oxide

NPDR: Non-proliferative diabetic retinopathy

 O_2 : Superoxide anion

OH: Hydroxyl radical

OxLDL: Oxidized low density lipoprotein

PARP: Poly adenosine-5`-diphosphate ribose polymerase

PC: Poor glycemic control

PDGF: Platelet derived growth factor

PDR: Proliferative diabetic retinopathy

PEDF: Pigment epithelium derived factor

PGI2: Prostacyclin

p-HBS: Para-hydroxybenzene sulfonate

PI3: Phosphatidylinositol

PIGF: Placenta growth factor

PKC: Protein kinase C

PLC_γ: Phospholipase C_gamma

PMS: Phenazine methosulphate

POD: Peroxidase

PPDR: Pre-proliferative diabetic retinopathy

PVR: Proliferative vitreoretinopathy

RAGE: Receptor for advanced glycation end products

RAS: Rennin angiotensin system

ROP: Retinopathy of prematurity

ROS: Reactive oxygen species

RRD: Rhegmatogenous retinal detachment

SDH: Sorbitol dehydrogenase

S.E.M: Standard error of mean

s- VCAM-1: Soluble form of vascular cell adhesion molecule

SOD: Superoxide dismutase

TC: Total cholesterol

TG: Triglycerides

TGF-b: Transforming growth factor-beta

TMB: Tetramethyl benzidine

TNF-α: Tumor necrosis factor-alpha

UKPDS: United Kingdom prospective diabetes study

VA: Visual acuity

VCAM: Vascular cell adhesion molecule

VEGF: Vascular endothelial growth factor

VEGFR-1: Vascular endothelial growth factor receptor-1

VEGFR-2: Vascular endothelial growth factor receptor-2

VLDL: Very Low Density Lipoprotein

VSMC: Vascular smooth muscle cells

WESDR: Wisconsin epidemiologic study of diabetic retinopathy

Fig. (1):	Normal eye anatomy and a retina with DR	5
Fig. (2):	A) Retina with NPDR B) Retina with PDR	7
Fig. (3):	Pathophysiology of DR	9
Fig. (4):	Pathways implicated in the pathogenesis of DR	11
Fig. (5):	Hyperglycemia-driven biochemical alterations	12
Fig. (6):	Effect of polyol pathway on glucose metabolism	13
Fig. (7):	Hexosamine pathway activation	14
Fig. (8):	Mediated PKC action in vascular tissues	15
Fig. (9):	Glycation and maillard reactions	16
Fig. (10):	Mechanisms of damage by AGEs	16
Fig. (11):	Pathways of AGEs formation	17
Fig. (12):	AGE-RAGE interaction	18
Fig. (13):	A schematic outline of the mechanisms underlying endothelial dysfunction in diabetes and their possible interactions	19
Fig. (14):	High glucose flux through constitutive glucose transporters on endothelial cells overwhelms the mitochondrial electron transport system	21
Fig. (15):	Diabetes-induced abnormalities in the retina that are influenced by oxidative stress	22

Fig. (16):	Mechanisms by which hyperglycemia and its immediate biochemical sequelae induce damages	23
Fig. (17):	Interactions between VEGF and receptors	26
Fig. (18):	Mechanism of growth factors action	27
Fig. (19):	Leukocytes interaction with endothelium	30
Fig. (20):	Paradigm relating cellular responses to the phenotype of the vascular wall	31
Fig. (21):	Hyperglycemia inhibits NO mediated vasodilatation	33
Fig. (22):	Balance of ROS and NO action on vascular function	34
Fig. (23):	Production of ROS and mitochondrial anti- oxidant system	35
Fig. (24):	The antioxidant enzymes	38
Fig. (25):	Growth factors role in PVR pathogenesis	48
Fig. (26):	A) Normal retinaB) Retina with PVR	48
Fig. (27):	Standard curve of human VEGF	70
Fig. (28):	Standard curve of hs-VCAM-1	76
Fig. (29):	Fasting plasma glucose levels in the studied groups	80
Fig. (30):	Glycated hemoglobin % in the studied groups	80
Fig. (31):	Serum creatinine levels in the studied groups	81

Fig. (32):	Serum TC levels in the studied groups	83
Fig. (33):	Serum TG levels in the studied groups	84
Fig. (34):	Serum HDL-C levels in the studied groups	84
Fig. (35):	Calculated serum LDL-C levels in the studied groups	85
Fig. (36):	Lipid risk ratio 1 (LDL/ HDL) in the studied groups	86
Fig. (37):	Lipid risk ratio 2 (TC/ HDL) in the studied groups	86
Fig. (38):	Erythrocytic SOD enzyme activity in the studied groups	87
Fig. (39):	Serum VEGF levels in the studied groups	89
Fig. (40):	Vitreous VEGF levels in control, PDR, and PVR patients	89
Fig. (41):	Serum sVCAM-1 levels in the studied groups	91
Fig. (42):	Vitreous sVCAM-1 levels in control, PDR, and PVR patients	91
Fig. (43):	Correlation between serum VEGF levels and HbA_{1C} % in PDR patients	92
Fig. (44):	Correlation between serum sVCAM-1 levels and HbA _{1C} % in PDR patients	92

Fig. (45):	Correlation between serum VEGF levels and lipid risk ratio 1 (LDL/ HDL) in PDR patients	93
Fig. (46):	Correlation between serum sVCAM-1 levels and lipid risk ratio 1 (LDL/ HDL) in PDR patients	93
Fig. (47):	Correlation between serum VEGF levels and erythrocytic SOD activity in PDR patients	94
Fig. (48):	Correlation between serum sVCAM-1 levels and erythrocytic SOD activity in PDR patients	94
Fig. (49):	Correlation between serum and vitreous VEGF levels in (a) patients with PDR, and (b) patients with PVR	95
Fig. (50):	Correlation between serum and vitreous sVCAM-1 levels in (a) patients with PDR, and (b) patients with PVR	96

List of Tables

Table (1):	Standard and experimental therapeutic options in DR	46
Table (2):	Dilution of human VEGF standard	68
Table (3):	Dilution of hsVCAM-1 standard	73
Table (4):	The clinical data of the studied groups	78
Table (5):	Fasting plasma glucose and HbA_{1c} levels, in the studied groups	79
Table (6):	Serum creatinine levels in the studied groups	81
Table (7):	Lipids profile in the studied groups	83
Table (8):	Erythrocytic SOD enzyme activity in the studied groups	87
Table (9):	Serum and vitreous VEGF levels in the studied groups	88
Table (10):	Serum and vitreous sVCAM-1 levels in the studied groups	90
Table (11):	Summary of the results	97
Table (12):	Individual data of control group (Group I)	152
Table (13):	Individual data of diabetic patients without retinopathy (Group II)	153
Table (14):	Individual data of diabetic patients with proliferative diabetic retinopathy (Group III)	154
Table (15):	Individual data of non-diabetic patients with proliferative vitreoretinopathy (Group IV)	155