Direct Screening Methods for Rapid Identification of KPC-Producing Klebsiella Pneumoniae and Escherichia coli

Thesis

Submitted for Partial Fulfillment of Master Degree in *Clinical and Chemical Pathology*

Presented by

Walaa Ahmed Ahmed Ahmed Barakat (M.B., B.Ch.) Ain Shams University

Under Supervision of

Professor/ Névine Nabil Kassem

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor/ Omnia Abou El-Makarem Shaker

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/Sherin Ahmed El-Masry

Lecturer of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2012

طريقة الفحص المباشر للتعرف على كلبسيلا الإلتهاب الرئوي والإشريشية القولونية المنتجين لكاربابيناميز كلبسيلا الإلتهاب الرئوي في العينات الإكلينيكية

رسالــة

توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من

الطبيبة/ ولاء أحمد أحمد أحمد بركات بكالوريوس الطب والجراحة العامة كلية الطب جامعة عين شمس

تحت إشراف

أ.د/ نيڤين نبيل قاسم

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب - جامعة عين شمس

أ.د/ أمنية أبو المكارم شاكر

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب - جامعة عين شمس

د/ شيرين أحمد المصري

مدرس الباثولوجيا الإكلينيكية والكيميائية

List of Contents

Title P	Page
♦ Introduction	1
♦ Aim of the Work	4
♦ Review of Literature:	
Chapter 1:	
 Mechanisms of Antibiotic Resistance in Klebsiella Pneumoniae and Escherichia Coli5 	5
Chapter 2:	
o Carbapenems and Carbapenemases	26
Chapter 3:	
o Klebsiella Pneumoniae Carbapenemases3	38
Chapter 4:	
 Laboratory Detection of KPC Producing Organisms 	48
Chapter 5:	
o Treatment	30
Chapter 6:	
o Prevention and Control	37
♦ Materials and Methods	90
♦ Results	123
♦ Discussion	136
♦ Conclusion and Recommendations	149
♦ Summary	153
♦ References.	157
A Arabic Summary	

List of Tables

Table No.	Title	Page
1	Selected pathogens, resistance phenotypes and underlying mechanisms.	18
2	Comparison of Beta-Lactamase Classification Systems.	25
3	Groups and examples of β -lactam antimicrobial agents	27
4	Carbapenemases (classification, activity and producing organisms).	35
5	CLSI recommended screening guidelines for carbapenemase.	57
6	Carbapenem breakpoints.	58
7	Primers sequences.	96
8	The biochemical reactions of <i>E.coli</i> and <i>k.pneumoniae</i> strains.	108
9	Zone diameter interpretive standard for the tested antibiotics.	110
10	E-test MIC values for imipenem and meropenem	113
11	Components of PCR tube	118
12	Distribution of <i>k. pneumoniae</i> and <i>E.coli</i> isolates according to the type of specimen.	123
13	Distribution of <i>k. pneumoniae</i> and <i>E.coli</i> isolates according to the department.	124
14	Antibiotic resistance pattern of isolated <i>k. pneumoniae</i> and <i>E.coli</i> to different antibiotics by disc diffusion method.	125

List of Tables (Cont.)

Table No.	Title	Page
15	Results of carbapenem resistance among 100 isolates of <i>K. pneumonia</i> e and <i>E.coli</i> by 2 screening methods and disc diffusion.	127
16	Distribution of 15 resistant isolates by E-test according to the department.	128
17	Distribution of 15 resistant isolates by E-test according to the type of specimen.	128
18	Comparison between method 1 and confirmatory test (E- Test).	130
19	Diagnostic characteristics of method 1 to diagnose resistance considering confirmatory test(E-Test) as a reference method.	131
20	Comparison between method 2 and confirmatory test (E-Test).	132
21	Diagnostic characteristics of method 2 to diagnose resistance considering confirmatory test(E-Test) as a reference method.	133

List of Figures

Figure No.	Title	Page
1	Efflux systems reverse the diffusion of antibiotics across the OM.	8
2	Outer wall of Gram-positive and Gram-negative species and detail of porin channels of Gram-negative bacteria.	20
3	β-Lactamase found in bacteria and their classification and synthesis, whether chromosomally or plasmid mediated.	22
4	Klebsiella pneumoniae isolate tested with Imipenem E-test strip (AB Biodisk, Solna, Sweden) on Mueller-Hinton agar.	52
5	Susceptibility testing: E-test methodology	56
6	CHROMagar KPC.	61
7	Potentiation of carbapenems by APB in K. pneumoniae producing KPC-2.	65
8	Results of DDST with ETP.	67
9	The modified Hodge Test.	69
10	Results obtained with the modified Hodge test (MHT), the boronic acid-based MHT (BAMHT), and the OXA-based MHT.	72
11	5ml tryptone soya broth contain10 μg imipenem disc.	100
12	MacConkey agar plate showing ertapenem resistant k.pneumoniae.	102

List of Figures (Cont.)

Figure No.	Title	Page
13	β-Lactamase found in bacteria and their classification and synthesis, whether chromosomally or plasmid mediated	108
14	Klebsiella pneumoniae isolate tested with Imipenem E-test strip (AB Biodisk, Solna, Sweden) on Mueller-Hinton agar.	109
15	Meropenem E-test strip.	112
16	Agarose gel electrophoresis	121
17	Antibiotic resistance pattern of isolated k. pneumoniae and E.coli to different antibiotics by disc diffusion	126
18	Diagnostic characteristics of methods 1 and 2 to diagnose resistance considering confirmatory test (E-Test) as a reference method in the whole sample.	134
19	Diagnostic characteristics of methods 1 and 2 to diagnose resistance considering confirmatory test (E-Test) as a reference method in K.pneumoniae samples.	135
20	Diagnostic characteristics of methods 1 and 2 to diagnose resistance considering confirmatory test (E-Test) as a reference method in E.coli.	135

List of Abbreviations

ABC Adenosine triphosphate (ATP)-binding cassette

AcrAB Acriflavine resistance protein A and B

AK Amikacin
ALG Alginate

AMC Amoxicillin- clavulanic acid

AmpC Ambler Class C

APB aminophenyl-boronic acid

BA-CD Boronic acid combined disc test

blaBeta -lactamaseBMDBroth microdilution

CAZ Ceftazidime

CDC Center for Disease Control and Prevention

CFP Cefoperazone Ciprofloxacin

CLSI Clinical Laboratory Standards Institute

CM Cytoplasmic membrane

CP Carbapenemase-producing

CPD Cefpodoxime
CRO Ceftriaxone
CTX Cefotaxime
CTX-Ms Cefotaximase

ddNTP dideoxynucleotide triphosphate

DDST Double disc synergy test

E. coliEscherichia coliEpsilometer test

EDTA Ethylene-diamine-tetra-acetic acid Extended-spectrum β lactamases

EU European Union
F Nitrofurantoin

FOX Cefoxitin

GES Guiana extended spectrum beta- lactamase

GIM German imipenemase

HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic

acid

IBC Integron borne cephalosporinase

ICU
IEF
IM
Intensive care unit
Isoelectric focusing
inner membrane

IMI Imipenem hydrolyzing β- lactamase

IMP Inner membrane proteins

INDindologenesIPMImipenemK.Klebsiella

KPC Klebsiella pneumoniae carbapenemase

LPS Lipopolysaccharide

MATE Multidrug and toxic compound extrusion

MBLs Metallo-\(\mathbb{G}\)-lactamases

MB-PCR molecular beacons-polymerase chain reaction

MDR Multi drug resistant

MEM Meropenem

MFP membrane fusion proteinMFS Major facilitator superfamily

MHT Modified Hodge Test

MIC Minimum inhibitory concentration

MRSA Methicillin resistant Staphylococcus

NDM aureus

New Delhi metallo-ß-lactamase

Non metalloenzyme carbapenemase

OMP Outer membrane

OmpC Outer membrane proteins

Outer membrane protein C

OmpF Outer membrane protein F

Omp K35 Osmoporins of klebsiella pneumoniae
OmpK36 Osmoporins of klebsiella pneumoniae

OXA Oxacillin

OXA-MHT Oxacillin –Modified Hodge Test

P. Pseudomonas

PBPs Penicillin Binding Proteins

PC1 penicillinases 1

PCR Polymerase Chain Reaction

PFGE Pulsed- Field Gel Electrophoresis

PG Peptidoglycan

pIs Isoelecteric points

Qnr quinolones resistance

RND Resistance-nodulation-cell-division

S. Streptococcus

S. marcescens
SHV
SIM
Serratia marcescens
sulfhydryl variable
Seoul imipenemase

SME Serratia marcescens enzyme
SMR Small multidrug resistance

SPM San Paulo metallo-β-lactamase

Spp. Species

SXT Trimethoprim-Sulfamethoxazole

TEM Temoneira (name after the patient providing

the first sample)

TZP Tazobactam
United States

UTI Urinary tract infection

VIM Verona integron-encoded metallo-β-lactamase

Zn Zinc

First of all, thanks to **Allah** for helping and guiding me in accomplishing this work and for everything else I have.

Words are not sufficient to express my sincerest appreciation and my deepest gratitude to **Professor/ Névine** Nabil Kassem, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her continuous encouragement, and her precious remarks which guide me to present this work in its proper way, it was indeed an honor to have been supervised by her.

I would like to thank **Professor/Omnia Abou El-Makarem Shaker**, Professor of Clinical and Chemical Pathology, for her guidance, meticulous revision and suggestions which were of great value to me.

I would like to deeply thank **Doctor/ Sherin Ahmed El-Masry** Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her continuous guidance and suggestions which were of great value to me, and her extreme support.

An endless thanks for my father, my mother and all my family special thanks to Wael Barakat and Amal Barakat, for their support without it, I would never completed this work.

🖎 Walaa Ahmed Barakat

طريقة الفحص المباشر للتعرف على كلبسيلا الإلتهاب الرئوي والإشريشية القولونية المنتجين لكاربابيناميز كلبسيلا الإلتهاب الرئوي في العينات الإكلينيكية

رسالــة

توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من

الطبيبة/ ولاء أحمد أحمد أحمد بركات بكالوريوس الطب والجراحة العامة كلية الطب جامعة عين شمس

تحت إشراف

أ.د/ نيڤين نبيل قاسم

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب - جامعة عين شمس

أ.د/ أمنية أبو المكارم شاكر

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب - جامعة عين شمس

د/ شيرين أحمد المصري

مدرس الباثولوجيا الإكلينيكية والكيميائية

Introduction

The growing increase in the rates of antibiotic resistance is a major cause for concern in both nonfermenting bacilli and isolates of the Enterobacteriaceae family. β-Lactams have been the mainstay of treatment for serious infections, and the most active of these are the carbapenems, which are advocated for use for the treatment of infections caused by extended-spectrum β-lactamase (ESBL)-producing *Enterobacteriaceae*, particularly *Escherichia coli (E.coli)* and *Klebsiella pneumoniae* (*K. pneumoniae*) (*Kaul and Chhina, 2010*).

Carbapenem resistance among Enterobacteriaceae, in particular *K. pneumoniae* and *E.coli*, is an emerging problem worldwide. Several resistance mechanisms have been reported to circumvent the efficacy of carbapenems, and carbapenemases (carbapenem- hydrolyzing β-lactamases) are the most prominent enzymes that neutralize carbapenems. Class A carbapenemases, which include bla_{KPC}, NMC, SME-1 to -3, IMI-1, and GES, have been characterized in several genera of the family Entero-bacteriaceae (*Wang et al., 2012*).

Klebsiella pneumoniae carbapenemase (KPC) is a molecular class A serine β -lactamase belonging to functional group 2f (*Fontana et al.*, *2010*). The KPC β -lactamase occurs most commonly in *K. pneumoniae*, but it has also been reported

sporadically in other species of Enterobacteriaceae (*Klebsiella oxytoca*, *Enterobacter spp.*, *E.coli*, *Salmonella spp.*, *Citrobacter freundii*, *and Serratia spp.*) and *Pseudomonas aeruginosa* (*P.aeruginosa*). The KPC enzyme confers resistance to all β-lactam agents including penicillins, cephalosporins, monobactams, and carbapenems (*Francis et al.*, *2012*).

The patient groups most likely to acquire KPC-producing bacteria include the patients at risk for infections caused by multidrug resistant organisms: patients with invasive devices, prolonged hospital stays (especially in an ICU), and heavy antibiotic exposure and those who are immunocompromised (*Arnold et al.*, 2012).

The bla_{KPC} gene is plasmid mediated and is carried in a Tn3-based transposon, Tn4401; the potential ease of mobility of this resistance mechanism is a major concern (*Kitchel et al.*, 2009). This plasmid also, often contains genes that code for resistance to non β -lactam agents such as aminoglycosides, fluoroquinolones, and trimethoprim-sulfamethoxazole (*Wang et al.*, 2012). Therefore, it is important to isolate infected patients and take contact precautions because of the potential for nosocomial transmission (*Toye et al.*, 2009). Also, controlled antibiotic usage must be complemented by the utilization of rapid and sensitive bla_{KPC} diagnostic assays (*Hindiyeh et al.*, 2008).