

PERFORMANCE-BASED ASSESSMENT OF MEDIUM-RISE MASONRY BUILDINGS

By

Ahmed Mohamed Abd-El Latif Yassin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING

Supervised By/

Prof. Dr. Amr Ali Abd El Rahman Professor of RC Structures, Ain-Shams University

Dr. Hussein OkailAssistant Professor of RC Structures, Ain-Shams University

Dr. Marwan ShedidAssistant Professor of RC Structures, Ain-Shams University

Cairo - 2015

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO-EGYPT 2015

APPROVAL SHEET

Thesis
 Student Name
 Thesis Title
 : Master of Science in Civil Engineering
 : Ahmed Mohamed Abd El Latif Yassin
 : Performance-Based Assessment of Medium Rise Masonry Buildings

Examiners Committee:	Signature
Prof. Dr. Mashhour Ahmed Ghoneim Professor of Concrete Structures, Faculty of Engineering-Cairo University	•••••••
Prof. Dr. Ahmed Sherif Essawy Professor of Concrete Structures, Faculty of Engineering-Ain Shams University	••••••
Prof. Dr. Amr Ali Abdelrahman Professor of Concrete Structures, Faculty of Engineering-Ain Shams University	•••••••

Date: / / 2015

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Ahmed Mohamed Abd El Latif

Signature

Date: 06 May 2015

Acknowledgements

First of all, I want to thank GOD for helping me to finish this work in a proper shape, and for guiding me though all time.

I would like to extend my warmest heartfelt gratitude for my parents who helped, guided and supported me in every step of my life, and for their patience and encouragement throughout my entire study.

I would also like to extend my deep and sincere appreciation for Prof. Dr. Amr Ali Abd El Rahman for providing guidance and support which kept me working on my best efforts on this research. I'm extremely grateful to Dr. Hussien Okail and Dr. Marwan Shedid for their valuable and continuous guidance in all phases of this research.

I believe that I have given my all effort in developing this research as accurately and truthfully as possible. Moreover, I am surely personally responsible for the conclusions and opinions expressed in this research.

Finally, I would like to dedicate this work to my beloved parents as a deep appreciation and gratitude for all their efforts.

Information about the Researcher

Name: Ahmed Mohamed Abd El Latif Yassin

Date of Birth: 5 July 1989

Place of Birth: Cairo, Egypt

Qualifications: B. Sc. Degree in civil engineering (structural department)

Faculty of Engineering, Ain-Shams University (2011).

Present Job: Teaching Assistant

Abstract

The behavior of masonry walls depends on the behavior of several materials that have different characteristics such as blocks, mortar, reinforcement and grout. Such combination makes nonlinear analysis of such walls challenging. Consequently, there is a need to develop numerical models of such complex combination that are both accurate and simple. These macro models are used to simulate the in-plane response of structural walls under cyclic loading simulating earthquake effects which is difficult to be implemented in the laboratory. The validity of the developed models was investigated against previous experimental results and comparison showed that developed models could be used in simulating reinforced fully-grouted masonry shear walls.

The principal objective of this study was to predict the seismic performance of medium rise reinforced masonry shear walls having rectangular, flanged and end-confined cross sections while varying wall aspect ratio, level of applied axial stress and vertical reinforcement ratio. The second main objective was to predict the probability of a specific damage state by using fragility curves as a sort of performance based assessment criteria. The third objective was to study the ductility response of a structure composed of different wall types and having different ductility capacities and consequently the response modification factor for the whole building can be specified and implemented through this study.

Results showed that displacement ductility capacity was very sensitive to the level of axial compression much more than the effect of vertical reinforcement, where displacement ductility decreases significantly with the increase of axial load compared to increase in vertical reinforcement ratio. Also, it was concluded that higher aspect ratio (height to length ratio) walls poses lower ductility capacity.

Fragility diagrams were used to predict the probability of exceeding a specific state of damage (initial cracking, steel yielding, wall toe crushing and steel buckling or fracture) when walls are subjected to a seismic demand input parameter which is considered as drift ratio. It was found that end-confined wall

section is the least vulnerable wall system for the third and fourth damage states followed by flanged then rectangular wall sections. The third and fourth damage states are directly related to ductility and hence the best indicator for the seismic performance of structural wall systems.

Regarding to structure integrity for a building composed of ten walls having different ductility capacities, it was concluded that the outcome global ductility response of a building was totally different from individual walls and it is highly sensitive to the ratio of participation of ductile wall system such as end-confined and flanged wall sections. And by considering equal displacement approach which is implemented in many codes, it could be considered that response modification factor equal to system displacement ductility.

TABLE OF CONTENTS

	Page
ABSTRACT	I
LIST OF TABES	VI
LIST OF FIGURES	VII
LIST OF SYMBOLS	XI
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Reinforced Masonry Wall Behavior	1
1.3 Problem Statement	2
1.4 Research Objectives	3
1.5 Outline of Thesis	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Experimental Studies on Flexure-Dominated Masonry Walls	5
2.3 Experimental Studies on Shear-Dominated Masonry Walls	15
2.4 Numerical Modeling Studies	18
2.4.1 Fiber Model	
2.4.2 Truss Model	20
2.4.3 Three Vertical Line Element (TVLE)	21
2.5 Seismic Performance Parameters	22
2.5.1 Plastic Hinge	22
2.5.2 Displacement Ductility	26
2.6 Codes and Standards	29
2.7 Conclusion	33
CHAPTER 3: NUMERICAL ANALYSIS AND VALIDATION	34
3.1 Introduction.	34
3.2 Experimental Data	35
3.3 Nonlinear Numerical Model	39
3.3.1 Nonlinear Solution Procedure	40
3.3.2 Wall Element Model	42
3.3.3 Constitutive Material Model.	43

3.3.3.1 Masonry Material	43
3.3.3.2 Reinforcement Material	45
3.3.4 Modeling Approach	46
3.4 Modeling Evaluation	47
3.4.1 Cyclic Response	48
3.4.2 Ultimate Strength	51
3.4.3 Displacement at Ultimate Strength	52
3.4.4 Displacement at 20% Strength Degradation	52
3.4.5 Displacement at Yielding	53
3.4.6 Displacement Ductility	53
3.4.7 Energy Dissipation	54
3.4.8 Effective Stiffness	57
3.5 Conclusion	58
CHAPTER 4: PARAMETRIC STUDY	59
4.1 Introduction.	59
4.2 Characteristics of Masonry walls	59
4.3 Effect of Vertical Reinforcement	60
4.3.1 Ultimate Strength	60
4.3.2 Yield Displacement	63
4.3.3 Displacement at 20% Strength Degradation	64
4.3.4 Displacement Ductility at 20% Strength Degradation	66
4.4 Effect of Axial Compression	68
4.4.1 Ultimate Strength	68
4.4.2 Yield Displacement	70
4.4.3 Displacement at 20% Strength Degradation	71
4.4.4 Displacement Ductility	73
4.5 Conclusion	74
CHAPTER 5: SEISMIC PERFORMNCE ASSESSMENT	76
5.1 Introduction	76
5.2 Damage States	77
5.3 Fragility Assessment	79
5.4 Fragility Function Development	
5.5 Conclusion.	89

CHAPTER 6: BUILDING DUCTILITY	90
6.1 Introduction	90
6.2 Building Ductility Capacity	90
6.3 Displacement Ductility Calculation	93
6.4 Results	95
6.5 Response Modification Factor	100
6.6 Conclusion	103
CHAPTER 7: CONCLUSIONS	104
7.1 Summary	
7.2 Conclusions	104
7.3 Future work	106
REFERENCES	108

LIST OF TABLES

Page
Table 2.1: Idealized plastic hinge length
Table 2.2: Design requirements according to CSA S304.132
Table 3.1: Tested wall data
Table 3.2: Parameter used for masonry modeling
Table 3.3: Parameter used for steel modeling
Table 3.4: Summary of Experimental and Analytical ultimate strength52
Table 3.5: Summary of Experimental and Analytical Displacement at ultimate strength
Table 3.6: Summary of Experimental and Analytical Displacement at 20% Strength degradation
Table 3.7: Summary of Experimental and Analytical Displacement at Yielding53
Table 3.8: Summary of Experimental and Analytical Displacement Ductility54
Table 4.1: Ultimate strength for different wall section types61
Table 5.1: Damage States according to FEMA 30679
Table 5.2: Matrix of RM Prototypical Walls for Fragility Development80
Table 5.3: Rectangular wall Damage state
Table 4.4: Flanged wall Damage state
Table 5.5: End-Confined wall Damage state
Table 5.6: Mean drift and logarithmic standard deviation values for different wall sections
Table 6.1: Different walls combination92
Table 6.2: Structure and Individual walls displacement ductility99

LIST OF FIGURES

Page
Figure 1.1: Failure mechanism
Figure 2.1 a: Flexural failure mode and load resisting mechanism6
Figure 2.1 b: Shear failure mode and load resisting mechanism
Figure 2.2: Reinforcement configuration for Gahnem et al. 1992
Figure 2.3: Boundary element confinement for shedid et al. 201011
Figure 2.4: Evenly distributed vertical reinforcement and jamb reinforcement Kapoi, C. 2012
Figure 2.5: Shear Failure Envelope as a function of Displacement Ductility17
Figure 2.6: fiber modeling
Figure 2.7: Fiber section with shear spring model
Figure 2.8: Three vertical line element model
Figure 2.9: Total displacement
Figure 2.10: Inelastic curvature spreading along wall height25
Figure 2.11: Displacement ductility factor µ26
Figure 2.12: Alternative definitions for yield displacement
Figure 2.13: Alternatives definitions for ultimate displacement29
Figure 2.14: Strain Distribution (MSJC 2011)30
Figure 3.1: Test setup and instrumentation by Shedid et.al. (2010)35
Figure 3.2: Reinforcement details for 3 and 2-storey test specimens (Shedid et al. (2010))

Figure 3.3: Cross-Sections of the Test Walls (Shedid et al. (2010) and their Model
Discretization
Figure 3.4: Flow Chart for Non-Converged Increment (SeismoStruct Manual)41
Figure 3.5: Fiber Element Discretization (SeismoStruct Manual)
Figure 3.6: Stress-Strain relationship for Mander concrete model
Figure 3.7: Menegotto-Pinto steel model
Figure 3.8: Experimental and Numerical Response for Reinforced Masonry Walls
Figure 3.9: Experimental and Numerical Energy Dissipation Results56
Figure 3.10: Experimental and Numerical Effective Stiffness Results58
Figure 4.1: Strain distribution with increasing reinforcement ratio61
Figure 4.2: Effect of vertical reinforcement on ultimate capacity62
Figure 4.3: Strain distribution illustrating effect of increasing reinforcement on yielding curvature
Figure 4.4: Effect of vertical reinforcement on yield displacement and drift64
Figure 4.5: Strain distribution illustrating effect of increasing reinforcement on displacement capacity
Figure 4.6: Effect of vertical reinforcement on displacement at 20% strength degradation and drift
Figure 4.7: Effect of vertical reinforcement on displacement ductility67
Figure 4.8: Strain distribution illustrating effect of increasing axial stress on ultimate capacity
Figure 4.9: Effect of axial compression on ultimate capacity70

Figure 4.10: Effect of axial compressive stress on yield displacement71
Fig.4.11: Effect of axial compressive stress on displacement at 20% strength degradation
Figure 4.12: Effect of axial compressive stress on displacement ductility74
Figure 5.1: Performance levels
Figure 5.2: Different wall section Curvature
Figure 5.3: Fragility curves for different wall section types and aspect ratios86
Figure 5.4: Effect of wall section type on fragility curves
Figure 6.1: Reinforced masonry walls arrangement91
Figure 6.2: Updated Stiffness Method demonstration94
Figure 6.3: Buildings Load-Displacement Curves
Figure 6.4: Structure enhancement variation
Figure 6.5: Equal displacement approach

LIST OF SYMBOLS

H_w = wall height

 L_W = wall length

C = distance between neutral axis and maximum compression fiber

L_S = distance between maximum and minimum moment of wall height

 A_R = wall aspect ratio

L_P = equivalent plastic hinge length

 D_b = bar diameter

 μ_{Δ} = displacement ductility

 $\mu_{\Delta 0.8u}$ = displacement ductility measured up to 20% strength degradation

 μ_{\emptyset} = curvature ductility

 \emptyset = section curvature

 $Ø_{v}$ = yield curvature

 \emptyset_p = inelastic curvature

 Θ_p = inelastic rotations

 $\Delta_{\rm v}$ = yield displacement

 Δ_p = inelastic displacement

 $\Delta_{\rm u}$ = displacement at ultimate strength

 $\Delta_{0.8u}$ = displacement at 20% strength degradation

 ξ_{mu} = ultimate masonry compressive strain

 \mathcal{E}_{m} = masonry strain

 \mathcal{E}_{s} = steel strain

 \mathcal{E}_{v} = steel yield strain

P = axial compressive load

 Q_u = ultimate shear strength

Q_y = lateral load corresponding to yielding

 Q_d = design lateral load

 σ = axial compressive stress

 A_g = section gross area

 $E_{\rm m}$ = masonry modulus of elasticity

 E_s = steel modulus of elasticity