

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Some Studies On Probiotics On Humoral And Cellular Immunity In Poultry

A thesis presented by

Ahlam Shalaby Mohamed Shalaby

(Bachelor Degree of Veterinary Sciences, 2003)

For the Master Degree in Veterinary Medical Sciences

Microbiology (Bacteriology, Immunology and Mycology)

Under the Supervision of

Prof.Dr./ Mona Ibraheem El-Enbaawy

Professor and head of Microbiology Department Faculty of Veterinary Medicine, Cairo University.

Prof.Dr./ Sahar Ahmed Zouelfakar

Professor of Poultry Disease, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. /AbdEl-Fattah AbdEl-Hamid Nada Chief researcher and head of Immunology Department, Animal Health Research Institute, Dokki, Giza.

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيم

هَ أَلُوا سُبْحَانَك لَا عِلْمَ لَنَا إِلَّا مَا

مُيكِمَا لِمُعَالِمُ الْحَالِمُ الْعَلِيمُ الْمَكِمِةُ الْمَكِمِيمُ

صندق الله المعظيم

سورة البعرة- الأية32

Supervision sheet

Some Studies On Probiotics On Humoral And Cellular Immunity In Poultry

A thesis presented by

Ahlam Shalaby Mohamed Shalaby

Bachelor Degree of Veterinary Sciences, 2003 **Under the Supervision of**

Prof. Dr. / Mona Ibraheem El-Enbaawy

Professor and head of Microbiology
Faculty of Veterinary Medicine, Cairo University

Prof. Dr. / Sahar Ahmed Zouelfakar

Professor of Poultry Disease
Faculty of Veterinary Medicine, Cairo University

Prof. Dr. /Abd El-Fattah Abd El-Hamid Nada

Chief researcher and head of Immunology
Immunology Department, Animal Health Research Institute (AHRI)

Dokki - Giza

Name: Ahlam Shalaby Mohamed Shalaby.

Nationality: Egyptian.

Date of birth: 23/8/1981.

Place of birth: Giza, Egypt.

Degree: M.V.Sc. in Veterinary Medical Science.

Specification: Microbiology (Bacteriology, Immunology and Mycology).

Thesis title: Some studies on probiotics on humoral and cellular immunity in

Poultry.

Abstract

This study aimed to investigate the immuno-modulatory effect of a commercial probiotic (**Bactocell**)[®] in broiler chickens through investigating the relationship between in vitro phagocytosis by monocyte macrophage with in vivo pathogen clearance and antibody production which providing a new parameter to improve disease resistance in poultry.

A total number of 260 one day old SASSO chicks were divided into 2 experiment in the study experiment I a total of 160 one day broiler chickens were divided into 4 equal groups G (1) chickens served as negative control G (2) chickens were fed on commercial ration supplemented with probiotic (Bactocell) 1 Kg / ton G (3) chickens were fed on commercial ration supplemented with probiotic (Bactocell) 1 Kg / ton and vaccinated with NDV and inactivated H5N1 Avian influenza (AI) vaccines G (4) chickens were vaccinated with NDV and inactivated H5N1 Avian influenza (AI) vaccine. Experiment II was conducted to evaluate the impact effect of probiotic in chickens experimentally infected with *S*. Enteritidis a total of 100 chickens of 29 days of age were divided into 4 equal groups G (A) chickens served as negative control G (B) chickens were fed on commercial ration supplemented with probiotic (Bactocell) 1 Kg / ton G (C) chickens infected with *S*. Enteritidis orally at 29 day of age in a single dose (10⁸ CFU /ml) in

0.2 ml phosphate buffer saline G (D) chickens fed on commercial ration supplemented with probiotic and infected with S. Enteritidis. The results showed that probiotics supplementation stimulate both humoral and innate immune response. Chickens supplemented with probiotic & vaccinated (G3) showed significant increase in HI titers against NDV at 5th weeks compared to vaccinated chickens and were higher in HI titers against (AI) at 21 days post-vaccination among groups. Lysozyme activity revealed significant increase in probiotic chickens versus non treated ones at 1st and 5th weeks of age. Chicken supplemented with probiotic (G2) showed significant increase in phagocytic % of macrophage at 1st, 2nd and 5th weeks, also phagocytic index at 1st, 2nd, 5th weeks compared to control. Chicken infected with S. Enteritidis (G) C showed significant decrease in phagocytic % and index at 7. 14 and 21 days post infection compared with control (G) A, while chickens supplemented with probiotic & infected with Salmonella (G) D showed significant increase phagocytic % and phagocytic index at 7 and 21 days post infection compared to S. Enteritidis group (G) C. Interdigital skin test showed non-significant change in experiment I among groups while in experiment II chickens supplemented with probiotic (G) B showed significant increase in skin thickness at 24 hr. compared to chickens infected with S. Enteritidis (G) C. Protection rate against challenge with NDV reached 90 % in chickens supplemented with probiotic & vaccinated while chickens vaccinated only revealed 60 % protection rate. It was concluded that probiotic (Bactocell)® proved to be able implement humoral and innate immune response and have a potent immuno-modulatory effect in chickens beside another effect in inhibition or reduction of *S*. Enteritidis count in infected poultry.

Key words: (probiotics-chickens-humoral immunity-cellular immunity-*Salmonella*).

Dedication to

My mother,

MY father,

My beloved husband Shereif, My children

&

My brothers and my sister

Acknowledgement

First of all, I would like to express my all-embracing gratitude and praise to ALLAH, Glorified be He, for his unmitigated support and graceful benevolence in carrying out this humble thesis.

I would like to seize the opportunity to express my greatest indebtedness to **Prof. Dr. Mona Ibraheem El-Enbaawy**, Professor and head of Microbiology Department, Faculty of Veterinary Medicine, Cairo University for her initiating power, effective scientific supervision.

I am obliged to offer the utmost respect and thanks for the generous help of **Prof. Dr. Sahar Ahmed Zouelfakar**, Professor of poultry disease, Department of Poultry Disease, Faculty of Veterinary Medicine, Cairo University.

I shall never forget the highly appreciated advices and most esteemed constructive criticism of **Prof. Dr. AbdEl-fattah**Abdelhamid Nada, Chief researcher and head of Immunology Department, Animal Health Research Institute, Doki, Giza.

All love, respect and thanks for the help of prof. Dr. Mohamed El-shater, Professor of Microbiology, Department of Food hygiene, Animal Health Research Institute, ARC, Also members and workers in the Immunology Department, Animal Health Research Institute, ARC, Doki, Giza for their continuous support.

List of contents

	Contents	Page No.
1.	Introduction	1
2.	Review of literature	5
2.1	Definition of probiotics	5
2.2	Probiotics and health	5
2.3	Mode of action of Probiotics	12
2.4	Protective effect of probiotic	19
2.5	Probiotics and immune system	25
2.6 T	he effect of probiotics on Salmonella infection	48
3.	Material and Methods	62
3.1	Materials	62
3.1.1	Experimental chickens	62
3.1.2	Probiotic	62
3.1.3	Vaccination	62
3.1.3.1	Inactivated H5N1 Avian Influenza (AI) vaccin	e 62
3.1.3.2	Newcastle disease (ND)	62
3.1.3.2.1	Hitchener B1+H120 vaccine	62
3.1.3.2.2	Lasota strain	62
3.1.4	Challenge Newcastle disease NDV strain	62
3.1.5 Re	eagents used for Heamagglutination Inhibition (HI) test 63
3.1.6	Reagents used in estimation of serum lysozyme	activity 63
3.1.6.1	Sodium phosphate dibasic	63
3.1.6.2	Potassium phosphate monobasic	63
3.1.6.3	Phosphate buffer	63

T	iat	~ t	~~	~ +	~ ~	+-
L	ist	OΙ	CO	ΠL	eп	llS

_	_	-	_
-7	n	4	
	v	_	

3.1.6.4	Substrate buffer	63
3.1.6.5	Standard lysozyme solution	63
3.1.7	Reagents used in estimation of Serum Nitric Oxide leve	el 64
3.1.8	Reagents used for evaluation of phagocytic activity	64
3.1.8.1	Heparin preservative free	64
3.1.8.2	RPMI 1640 medium	64
3.1.8.3	Ficoll separation medium	64
3.1.8.4	Fetal calf serum	64
3.1.8.5	Candida albicans	65
3.1.8.6	Giemsa Stain	65
3.1.8.7	Cell culture chamber	65
3.1.8.8	Rounded cover slips	65
3.1.9	Phytohemagglutinin (PHA- P)	65
3.1.10	Materials used for Salmonella Enteritidis enumeration	65
3.1.10.1	Bacterial strain	65
3.1.10.2	2 Culture media and reagents	65
3.1.10.2	2.1 Buffered peptone water	65
3.1.10.2	2.2 Physiological Saline solution	66
3.1.10.2	2. Xylose lysine deoxycholate Agar (Xld Agar)	66
3.1.11	Disposable plastics, glassware and laboratory supplies	66
3.1.12	Equipment	67
3.2	Methods	68
3.2.1	Experimental design	68
3.2.1.1	Experimental design of experiment I	68
3.2.1.2	Experimental design of experiment II	69
3.2.2	Techniques used for evaluation of humoral immune	70
	response chickens	

List	2015	
3.2.2.1	Haemagglutination – inhibition (HI)	70
3.2.3	Techniques used for evaluation of innate	71
	immune response of chickens	
3.2.2.2	Measurement of Lysozyme activity by agarose	71
	cell lysis assay	
3.2.2.3	Measurement of nitric oxide	73
3.2.3.1	Measurement of phagocytic activity of peripheral	73
	blood monocytes using candida albicans:	
3.2.3.1.	1 Separation of peripheral blood monocytes cells	73
3.2.3.1.2	2 Enumeration of available mononuclear cells	74
3.2.3.1.3	3 Isolation and cultivation of peripheral blood	74
	mononuclear phagocytic cells	
3.2.3.1.4	4 Preparation of suspension candida albicans	75
3.2.3.1.5	5 Evaluation of phagocytic activity	75
3.2.3.2	Interdigital skin test	76
3.2.3.3	Challenge test (protection test)	77
3.2.3.4	Weighting of lymphoid organs	77
3.2.4	Salmonella Enteritidis enumeration	77
3.2.4.1	Preparation of Buffered peptone water	77
3.2.4.2	Preparation of physiological Saline solution	78
3.2.4.3	Preparation of Xylose lysine deoxycholate Agar	78
	(Xld Agar)	
3.2.4.4	Procedure of Salmonella enumeration	78
3.2.5	Statistical Analysis	79
4.	Results	80
4.1	Result of experiment I	70

4.1.1 Effect of probiotics on Humoral immune response of	80
chickens vaccinated with NDV and avian influenza vacc	ine
4.1.1.1 Determination of antibody levels in chicken	80
against NDV as measured by	
heamagglutination inhibition (HI) test	
4.1.1.2 Determination of antibody levels in chicken	83
sera against Influenza vaccine (H5N1) as measured	1
by haemagglutination inhibition antibody	
(expressed as log ₂ titer) 4.1.2 The effect of probiotics on innate immune	86
response of chickens vaccinated with NDV and avian	
influenza vaccine:	
4.1.2.1 Serum lysozyme activity	86
4.1.2.2 Serum nitric oxide concentrations (μm) of chickens	90
vaccinated with NDV and avian influenza vaccine	
4.1.2.3 Phagocytic activity of chickens vaccinated with NDV	93
and avian influenza vaccine	
4.1.3 Interdigital skin test of chickens vaccinated with NDV	98
and avian influenza vaccine	
4.1.4 Protection test (Challenge test) in chickens supplemented	1 101
with probiotic & or vaccinated	
4.1.5 Mean weights of the lymphoid organs (spleen, bursa,	104
and thymus) relative to the live weight in chickens	
supplemented with probiotic & or vaccinated	
4.2 Result of experiment II	106

List of contents

•	•	4	
	-	-	_
			-
_	•	-	-

4.2.1 The effect of probiotics on innate immune response	106
of chickens infected with S. Enteritidis.	
4.2.1.1 Serum lysozyme activity of chickens infected with	106
S. Enteritidis	
4.2.1.2 Serum nitric oxide concentrations (μm) of chickens	109
infected with S. Enteritidis	
4.2.1.3 Phagocytic activity of chickens infected with Salmonella	112
Enteritidis	
4.2.2 Interdigital skin test of chickens infected with 116	
S. Enteritidis	
4.2.3 The total Salmonella count (CFU/g feaces) after	119
experimental infection with Salmonella Enteritidis	
5. Discussion	122
6. Summary	138
7. References	144
8. Arabic summary	
9. Arabic abstract	

List of Tables

	Ta	ble	page No.
1		The effect of oral supplementation of probiotic	81
		on Haemagglutination inhibition (HI) titer of NDV	
		expressed as log ₂ titer.	
	2	The effect of oral supplementation of probiotic	84
		on mean Haemagglutination inhibition (HI) titer	
		of AI vaccine (H5N1) expressed as log ₂ titer.	
	3	The effect of oral supplementation of probiotic on	88
		lysozyme activity (µg/ml) chickens vaccinated	
		with NDV and avian influenza vaccine.	
	4	The effect of oral supplementation of probiotics	91
		on serum nitric oxide concentrations (μm) of	
		chickens vaccinated with NDV and avian influenza	vaccine.
	5	The effect of oral supplementation of probiotic on	95
		phagocytic activity of chickens vaccinated with	,,,
		NDV and avian influenza vaccine.	
	6	Interdigital skin response against PHA in chickens	99
		supplemented with probiotic & or vaccinated.	

7	Protection rate of different experimental groups	102
	of chickens against challenge with NDV.	
8	Mean weights of the lymphoid organs (bursa,	105
	spleen and thymus) relative to the live weight of	
	chickens supplemented with probiotic & or vaccinated.	
9	The effect of oral supplementation on lysozyme activity	107
	$(\mu g/ml)$ in chickens infected with $\emph{Salmonella}$ Enteritidis.	
10	The effect of oral supplementation of probiotics on	110
	serum nitric oxide in chickens infected with	
	Salmonella Enteritidis	
11	The effect of oral supplementation of probiotics on	113
	phagocytic activity of chicken infected with	
	Salmonella Enteritidis.	
10	Intendicital alsia magnetae against DITA in abialyana	117
12	Interdigital skin response against PHA in chickens	117
	infected with Salmonella Enteritidis.	
13	Total Salmonella count (CFU/g feaces) after	120
	experimental infection with Salmonella Enteritidis	