Restorative Capacity of Bone Marrow Transplantation in Gamma-irradiated Rats: A Study of the Bone Marrow, Spleen, Lungs and Blood

By

Walaa Taha Abd El-Aziz

B. Sc. Chemistry and Zoology, 2004 In Partial Fulfillment for the Requirement of the Master Degree in Zoology

Under supervision of

Prof. Dr. Monir Aly El-Ganzuri

Prof. of Cell Biology, Zoology Department Faculty of Science, Ain Shams University.

Prof. Dr. Mona A. El Gawish

Prof. of Biochemistry, Radiation Biology Department National Centre for Radiation Research and Technology Atomic Energy Authority.

Prof. Dr. Neamat H. Ahmed

Prof. of Cell Biology, Radiation Biology Department National Centre for Radiation Research and Technology Atomic Energy Authority

> Faculty of Science Ain Shams University 2016

Restorative Capacity of Bone Marrow Transplantation in Gamma-irradiated Rats: A Study of the Bone Marrow, Spleen, Lungs and Blood

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Award of Degree of Master in Science (Zoology).

Presented By

Walaa Taha Abd El-Aziz

To

Zoology Department - Faculty of Science

Ain Shams University Cairo, Egypt 2016

[وقُل رَّبِّ زِدْنِي عِلْماً] عِلْماً

سورة طه الآيه رقم 114

Acknowledgements

All praise is to **ALLAH** (*almighty*), the beneficent, the merciful, without whose mercy and guidance, this work would never have been started nor completed. I praise him (*almighty*) as much as the heavens and earth and what in between or behind.

I would like to express my deep thanks and gratitude to *Prof. Dr. Monir Aly El-Ganzuri*, Professor of Cell Biology, Faculty of **Science**, Ain Shams University for his kind advice, encouragement and supervision throughout the stages of the study. Joining his research group was one of the best decisions I have made. It has been incredible experience learning from brilliant scientist, principled and fair manager of students and projects and a source of uncommonly insightful, actionable guidance.

My deep thanks and gratitude to *Prof. Dr. Mona A. El Gawish*, Professor of Biochemistry, department of radiation biology. National Centre for Radiation Research and Technology, Atomic Energy Authority, for her great efforts, suggesting the topic and planning the scheme of the present study, fruitful guidance, enlightening me with her vast experience during the course of this work, invaluable help, for the refinement of the thesis and for her kindness and patience.

I would like to express my science gratefulness and appreciation to *Prof. Dr. Neamat H. Ahmed*, Professor of Cell Biology, Department of Radiation Biology. National Centre for Radiation Research and Technology, Atomic Energy Authority,

for her supervising and for facilitation the accomplishment of this work, as well as her continuous valuable guidance and helpful throughout the stages of the study.

I am so grateful to all the staff members in Radiobiology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority and all my colleagues in the Department and to everybody who supported me, and have so graciously shared their knowledge and wisdom with me.

Also, I am so grateful to all the staff members in Zoology Department, Faculty of Science Ain Shams University and all my colleagues in the Department and to everybody who supported me with any kind of help.

I can't forget to extend my deep thanks to my dear husband, father, mother, brothers, sisters and all members of my family specially, for their continuous encouragement, patience and support throughout the entire period of this work.

Finally, I ask the help from *ALLAH* (*almighty*), who is omnipotent, omnipresent and omniscient to enhance my steps and to push me onward for the sake our nation.

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Abstract	
1-Introduction and Aim of the Work	1
2-Review of Literature	3
Radiation	3
Ionizing Radiation and its Clinical Effects	5
Biological Effects of Radiation	7
Radiation Effects on the Antioxidants	9
Radiation Effects on Lipids	10
Radiation Effects on Lactate Dehydrogenase	10
Radiation Effects on Alkaline Phosphatase	12
The Bone marrow	14
Radiosensitivity of the Body Cells	26
Effect of Gamma-Radiation on Some Body Organs	31
Histological Changes in the Spleen Induced by Gamma-radiation	31
Histological Changes in the Lung Induced by Gamma-radiation	31
The Bone Marrow Transplantation	37
3- Materials and Methods	42
I- Materials	44
1- Experimental Animals	44
2- Radiation Facility	44
3- Bone Marrow Transplantation	44

Contents (Cont.)

4- Experimental Design	45
II-The Methods	47
1- Biochemical Analyses:	47
Determination of the Total Reduced	47
Glutathione Content in the Blood	
Determination of Malondialdehyde Level in	49
the Blood	
Determination of Lactate Dehydrogenase	50
Level in the Blood	
Determination of Alkaline Phosphatase Level	51
in the Blood	
2- Complete Blood Count	52
3- Histological Studies:	53
Haematoxylin and Eosin for General	53
Histology	
Masson's Trichrome Stain for Collagen	54
Fibres	
III- Statistical Analyses	57
Results	58
Discussion	87
Summary and Conclusion	102
References	107
Arabic Summary	-
Arabic Abstract	-

List of Abbreviations

ALP Alkaline phosphatase

BFUE (Burst-forming unit erythroid)

BM Bone marrow

BMT Bone marrow transplantation

CAT Catalase

CBC Complete blood count Cluster of differentiation

CFU-S Colony Forming Unit- Spleen

CPK Creatinine phosphokinase
 CSFs Colony-stimulating factors
 D0 (Dose level for gamma rays)
 EDTA Ethylenediaminetetraacetic acid

Fas Death receptor or CD_{95}

FR Free radical **GSH** Glutathione

GSHPx Glutathione peroxidase **GVHD** Graft-versus-host disease

Gy Gray

HCT HaematocritHGB Haemoglobin

HSCs Haematopoietic stem cells

HSCT Haematopoietic stem cell transplantation

IR Ionizing radiation

IV IntravenousL: Lipid radicals

LDH Lactate dehydrogenaseLET Linear energy transfer

List of Abbreviations (Cont.)

LOO. Lipidperoxyl radical

LPO Lipid peroxidation

LYM Lymphocytes

M Mitosis

MDA Malondialdehyde

MHC Major histocompatibility complex

NIR Non-ionizing radiation

O₂· Superoxide radical OH· Hydroxyl radical

PLT Platelet

RBCs Red blood cells **RNA** Ribonucleic acid

RNS Reactive nitrogen speciesROS Reactive oxygen species

SOD Superoxide dismutase

TBA Thiobarbituric acid

TBI Total body irradiation

TCA Trichloroacetic acid

WBCs White blood cells

List of tables

Table	Title	Page
1	Different types of cells and their radiosensitivity	29
2	Histopathological changes in the lung after radiation	34
3	Effects of bone marrow (BM) transplantation on some blood components of the irradiated rats	59
4	Effects of bone marrow (BM) transplantation on alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels in the blood of irradiated rats (3 Gy & 5 Gy)	62
5	The effects of bone marrow (BM) transplantation on malondialdehyde (MDA) level in blood and liver of irradiated rats (3 Gy & 5 Gy)	65
6	Effects of bone marrow transplantation (BM) on reduced glutathione (GSH) level in blood and liver of the irradiated rats (3 Gy & 5 Gy)	68

List of Figures

List of Figures		
Fig.	Title	Page
1	Irradiation modulates tumour-cell	5
	phenotype and increases immune	
	recognition.	
2	The drawing shows the effect of bone	60
	marrow (BM) transplantation on blood	
	component levels of the irradiated rats.	
3	The drawing shows the effects of bone	63
	marrow (BM) transplantation on ALP&	
	LDH levels in the blood of the irradiated	
	rats.	
4	The drawing shows the effects of bone	66
	marrow (BM) transplantation on the	
	MDA level in the blood of the irradiated	
	rats.	
5	The drawing shows the effect of bone	69
	marrow (BM) transplantation on GSH	
	level in blood and liver of the irradiated	
	rats.	
6	A microscopical section of bone marrow	71
	biopsy from a control rat.	
7	A microscopical section of bone marrow	71
	biopsy from a rat treated with bone	
	marrow transplantation.	
8	A microscopical section of bone marrow	72
	biopsy from a rat exposed to 3 Gy	
	γ-radiation.	
9	A microscopical section of bone marrow	72
	biopsy from 3 Gy γ-irradiated rats treated	
	with bone marrow transplantation.	
d.	1	

List of Figures (Cont.)

Fig.	Title	Page
10	A microscopical section of bone marrow biopsy from a rat exposed to 5 Gy γ-radiation.	73
11	A microscopical section of bone marrow biopsy from 5 Gy γ -irradiated rat treated with bone marrow transplantation.	73
12	Photomicrographs of sections of the spleen of control adult male albino rats.	75
13	Photomicrographs of spleen sections of rats treated with bone marrow transplantation.	75
14	Photomicrographs of spleen sections of rats exposed to 3 Gy γ-radiation.	76
15	Photomicrographs of spleen sections of rats exposed to 3 Gy γ -radiation and treated with bone marrow.	77
16	Photomicrographs of spleen sections of rats exposed to 5 Gy γ-radiation.	77
17	Photomicrographs of spleen sections of rats exposed to 5 Gy γ -radiation and treated with bone marrow transplantation.	78
18	Photomicrographs of sections of lungs of control adult male albino rats.	80
19	Photomicrographs of lung sections of rats treated with bone marrow transplantation.	80
20	Photomicrographs of lung sections of rats exposed to 3 Gy γ-radiation.	81

Fig.	Title	Page
21	Photomicrographs of lung sections of rats exposed to 3 Gy γ -radiation and treated with bone marrow transplantation.	81
22	Photomicrographs of lung sections of rats exposed to 5 Gy γ-radiation.	82
23	Photomicrographs of lung sections of rats exposed to 5 Gy γ -radiation and treated with bone marrow transplantation.	82
24	Photomicrographs of sections in the lungs of rats show the distribution of collagen fibres in the lung tissues.	84
25	Photomicrographs of sections in the lungs of rats treated with bone marrow transplantation.	84
26	Photomicrographs of sections in the lungs of rats exposed to 3 Gy γ-radiation.	85
27	Photomicrographs of sections in the lungs of rats exposed to 3 Gy γ -radiation and treated with bone marrow transplantation.	85
28	Photomicrographs of sections in the lungs of rats exposed to 5 Gy γ -radiation.	86
29	Photomicrographs of sections in the lungs of rats exposed to 5 Gy γ -radiation and treated with bone marrow transplantation.	86

Abstract

The current work was done on male albino rats (Rattus norvegicus) to investigate whether bone marrow (BM) transplantation could play a role in reducing the dangerous effects of γ-irradiation on the haematological parameters and the histological structure of the spleen, and lung tissues. The used animal groups included a control group, a BM-injected group, 3 and 5 Gy-irradiated groups, and 3 and 5 Gyirradiated groups that were injected intravenously (IV) into the caudal vein of the recipient rat with bone marrow after 3 hr from irradiation. All the experimental animal groups were weeks sacrificed after 5 of the treatments. haematological study included analyses of certain blood components (the count of the red and white blood cells, haemoglobin content "HGB", haematocrit value "HCT", blood platelets count "PLT"). The biochemical analyses included alkaline phosphatase (ALP), lactate dehydrogenase (LDH), malondialdehyde (MDA) and glutathione (GSH) in the blood and liver. The histopathological studies included the bone marrow, spleen and lungs.

The results showed that exposure to 3 Gy or 5 Gy γ -radiation induced significant decreases in certain blood components (WBCs, RBCs, HGB, HCT, PLT) and GSH level in both blood and liver, and significant increases in LDH and MDA levels in both blood and liver. Besides, radiation induced reduction in the bone marrow components and decrease in cell populations of the spleen tissue.

The lung tissue showed collapsed alveoli with thickened wall, congested blood vessels with irregular walls, thickened bronchiolar wall with incomplete epithelial lining and foci of haemorrhage and deposition of collagen fibres around the congested pulmonary blood vessels, bronchioles, alveolar sacs and in between alveoli after 5 Gy γ -irradiation.

BM transplantation 3 hours after whole body 3 or 5 Gy gamma-irradiation restored HCT value, partially ameliorated the other blood components (WBCs, RBCs, HGB, PLT) and demonstrated a significant preservation of the bone marrow components, and scanty adipose cells' replacement. An increase in cellularity of the periarteriolar lymphocyte sheath of the white pulps was noticed in the spleen tissue. The microscopical observations showed normality of the structure of the lung sections.

In Conclusion, BM transplantation exerts curative effects on radiation exposure hazards occurring in certain haematological and biochemical parameters and in the histological structure of the studied body organs (the bone marrow, spleen and lungs).