THE ROLE OF ADJUVANTS ON THE EFFICIENCY AND PERFORMANCE OF CERTAIN LOCALLY FORMULATED PESTICIDES

By

ZAKIA KAMAL LOTFY SABER EL-KHIAT

B. Sc. Agric. Sc. (pesticides), Ain Shams University, 2003 M. Sc. Agric. Sc. (pesticides), Ain Shams University, 2009

> A thesis submitted in partial fulfillment Of the requirements for the degree of

in
Agricultural Sciences
(Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

THE ROLE OF ADJUVANTS ON THE EFFICIENCY AND PERFORMANCE OF CERTAIN LOCALLY FORMULATED PESTICIDES

By

ZAKIA KAMAL LOTFY SABER EL-KHIAT

B. Sc. Agric. Sc. (pesticides), Ain Shams University, 2003 M. Sc. Agric. Sc. (pesticides), Ain Shams University, 2009

This thesis for PhD. degree has been approved by:

Date of Examination: / 2016

	Mohamed Abdallah Saleh Head research of Pesticides, Agricultural Research Center, M of Agricultural	
	Sayed Mohamed Abdel Latif Dahroug	
	Walaa Mohamed Abd El-Ghany	
Dr.	Mohamed Ibraheam Abd EL-Megeed	

THE ROLE OF ADJUVANTS ON THE EFFICIENCY AND PERFORMANCE OF CERTAIN LOCALLY FORMULATED PESTICIDES

By

ZAKIA KAMAL LOTFY SABER EL-KHIAT

B. Sc. Agric. Sc. (pesticides), Ain Shams University, 2003 M. Sc. Agric. Sc. (pesticides), Ain Shams University, 2009

Under the supervision of:

Dr. Mohamed Ibraheam Abd EL-Megeed

Prof. of Pesticides Chemistry, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Walaa Mohamed Abd El-Ghany.

Prof. of Pesticides Chemistry, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. EL-Sayed Mohii El-deen Fareg.

Senior Researcher of Pesticides Formulations, Department of Pesticides Formulations, Central Agricultural Pesticides Laboratory, Agricultural Research Center

ABSTRACT

Zakia Kamal Lotfey Saber El-Khiat: The Role of Adjuvants on the Efficiency and Performance of Certain Locally Formulated Pesticides. Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2017.

This study aimed to preparation new trend of locally lambda cyhalothrin (Emulsion Oil in Water and Oil Dispersion) pesticides formulations compared with conventional one (Emulsifiable Concentrate), with evaluating the effect of commonly used agricultural adjuvants (Argal and Techno oil) upon addition to these formulations. Adjuvants are considered to be safer and more friendly to the (eco-system) as they decrease the application rate of pesticides. Data demonstrated that the results of the physical and chemical properties for the three types of formulations pass in all parameters for these formulations, spray solutions and the active ingredient content were within the acceptable limit. Adding adjuvants to formulated pesticides caused some changes in the physical and chemical properties of the spray solutions. These changes increased the effectiveness of these formulations aganist cotton leaf worm and decreased the residue on cotton crop. Using Argal adjuvant decrased surface tension and enhanced spray solution which lead to increasing the deposit in the treated surface of the plant. Results showed that M3 gave most increase in average residual effect than the pesticide alone (M1). The highest effectiveness was that of EW M3 with improvement insecticidal efficiency of lambda-cyhalothrin against 4th instar larvae of cotton leafworm. LC50 for EW, OD and EC were (10.57, 5.46 and 5.1 ppm) respectively, with the half recommended dose. These results indicated that adjuvants increased the effectiveness of lambda-cyhalothrin formulations. Therefore, adjuvants may be used to reduce the number of applications per season and the application rates of insecticides.

Key words: Adjuvant, Physico-chemical properties, lambda cyhalothrin, emulsion oil in water, oil dispersion, emulsifiable concentrate, insecticidal effectiveness, cotton leaf worm, residues.

ACKNOWLEDGMENT

Thanks and praise to Allah for helping me during this work as part of his generous help throughout my life. I could never have done this work without the faith I have in you, Almighty.

I wish to express my deep gratitude, respect, appreciation and thanks to the late Prof. **Dr. Zidan Hendy Abd EL-Hamid,** (God bless his soul) Prof. of Pesticides Chemistry, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University.

I would like to express my sincere gratitude and deep thanks to my supervisor **Prof. Dr. Mohamed Ibraheam Abdel-Megeed** Prof. Emeritus of Pesticide Chemistry, Faculty of Agriculture, Ain Shams University, for his continuous support, guidance, advice, encouragement, and kind help with my Ph.D thesis .I could not have imagined having a better advisor for completing this work.

My thanks to **Prof. Dr.Walaa Mohamed Abd El-Ghany** Prof. of Pesticides Chemistry, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University, for his help, advice and encouragement throughout this work. It has been a period of intense learning for me, not only in the scientific arena, but also on a personal level.

I would also like to acknowledge and express my deepest thanks to **Dr. EL-Sayed Mohii El-deen Fareg,** Senior Researcher, Department of Pesticides Formulations, Central Agricultural Pesticides Laboratory.

I would like to express my respect and appreciation to **Dr. Islam N. Nasr,** Senior Researcher of Pesticides Residues, Central Agricultural Pesticides Laboratory, Agricultural Research Center, for his help and advice in order for this work to succeed.

Special thanks for all the staff members of Pesticides Formulations Department and my friends in Pesticides Residues Department, Central Agricultural. Pesticides Laboratory, Agricultural Research Center, Ministry of Agricultural.

Last but not least, I would like to thank my parents for giving birth to me in the first place and supporting me spiritually throughout my life, I feel indebted to them. Special and profound thanks to my brothers who offered invaluable support and humor over the years.

I must express great gratitude to my husband and my children for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Thanks to my friends, we were not only able to support each other by debating our problems and findings, but also by talking about things in our lives other than just our papers.

Thank you very much, everyone!

CONTENTS

	LIST OF TABLES
	LIST OF FIGURES
1.	INTRODUCTION
2.	REVIEW OF LITRERATUERS
3.	MATERIAL AND METHODS
1.	Pesticides used
1.1.	Lambda cyhalothrin
2.	Adjuvant and Surfactant
2.1.	Adjuvant used in pesticide formulations
2.1.1.	VO 2003
2.1.2.	T80
2.1.3.	60 BE
2.1.4.	RC
2.1.5.	FF4
2.1.6	MS
2.2.	Surfactant (Tank-mix adjuvant)
2.2.1	Argal (Silwet)
2.2.2.	Techno oil
3.	Solvent used
3.1.	CME
3.2.	Soy Bean Oil
3.3.	Solvent C9
4.	Insect
4.1.	Cotton leaf worm
5.	Experimental work.
	Preparing locally lambda cyhalothrin pesticides
<i>7</i> 1	formulations (Oil dispersion, emulsion oil in water) as
5.1.	nontraditional formulations and emulsifiable concentrate
	as classic formulations.
5.1.1.	Oil dispersion formulation
5.1.2.	Emulsion oil in water
5.1.3.	Emulsifiable Concentrate formulation
<i>5</i> 2	Investigating the physico-chemical properties of locally
5.2.	formulated lambda cyhalothrin
5.2.1.	Tests carried out for the formulation
5.2.1.1.	Viscosity
5.2.1.2.	Surface tension

5.2.1.3. 5.2.2.	Flash point Determination of physico-chemical properties of spray solutions	46 46
5.2.2.1.	Emulsion stability and re-emulsification	46
5.2.2.2.	Dispersion stability.	47
5.2.2.3.	Persistent foam	47
5.2.2.4.	pH Measurement	47
5.2.2.5.	Electrical Conductivity	48
5.2.3. 5.2.3.1. 5.2.3.2.	Storage conditions on the specifications of pesticide Accelerated hot storage. Cold storage Effect of storage conditions on the stability of active	48 48 48
5.3.	ingredient content for lambda cyhalothrin formulations	48
5.4.	Determination the physico- chemical properties for selected adjuvants and surfactants	49
5.4.1	Solubility test	49
5.4. 2.	Surface tension	49
5.4.3.	The critical micelle concentration	49
5.4.4.	Hydrophilic –Lipophilic balance	50
5.4.5.	Free acidity or alkalinity	50
	Determination of the physico-chemical properties of the	
5.5.	spray solution of the locally formulated Lambda	
	Cyhalothrin 5% at the field dilution rate	50
	Evaluation of effectiveness of locally formulated	
5.6.	insecticide against 4 instars larvae of the cotton leafworm, <i>Spodoptera littoralis</i> (Boisd.)	51
5.6.1	Statistical analysis	52
5.6.1.1.	Abbott's formula	52
5.6.1.2.	Duncan multiple range test	52
5.7.	Leaf dipping technique: (Feeding method)	52
5.7.1.	Analysis for feeding method	52
6.	Residue	52
6.1.	Stock solutions of active ingredients	52
6.2.	Reagents and chemicals.	52
6.3.	Field experiment for residues.	53

6.4.	Sampling residue experimental	53
6.5.	Analytical procedures	53
6.5.1	Extraction	53
6.5.2.	Clean up.	54
6.6 6.7.	Instrumental determination	54
0.7.	Calibration curve	55
6.8.	Recovery studies.	55
6.9.	Statistical analysis.	55
4.	RESULTS AND DISCUSSION.	57
	Locally formulated lambda cyhalothrin pesticide	
1.	formulations	57
	Effect of stances and diams on the telegrapes of active	
2.	Effect of storage conditions on the tolerance of active ingredient content for lambda cyhalothrin	58
2.	formulations	30
	Tormulations	
3.	Physical chemical properties of lambda cyhalothrin	60
3.	technical	OU
	Physical parameters for the tested solvents using in	
4.	preparation lambda cyhalothrin formulation	60
5	% Solubility of the solvents with adjuvants	61
_	The physico-chemical properties for surface active	- 4
6.	agents	61
	The Dhysics chamical appropriate for leadly formulated	
7.	The Physico-chemical properties for locally formulated insecticides of lambda cyhalothrin 5 % (OD, EC and	65
<i>,</i> .	EW) formulations.	0.5
	Zw) iomidations.	
	The Physico-chemical properties of the spray solution of	
8.	the locally formulated Lambda Cyhalothrin 5% at the	69
	field dilution rate.	
	Evaluation of the effectiveness of locally formulated	
9.	th	73
<i>)</i> .	insecticides against 4 instars larvae of the cotton	13
	leafworm, Spodoptera littoralis (Boisd.)	

10.	Residual determination of different formulation types of lambda cyhalothrin	76
10.1.	Residual determination of the locally formulated pesticide (lambda cyhalothrin 5% OD) on cotton leaves	76
10.2.	Residual determination of the locally formulated pesticide (lambda cyhalothrin 5% EC) on cotton leaves	79
10.3.	Residual determination of the locally formulated pesticide (lambda cyhalothrin 5% EW) on cotton leaves.	82
5.	Summary and Conclusion	86
6.	REFERENCES.	
	ARARIC SUMMARY	

LIST OF TABLES

Table No.		Page
Table(1).	Tolerance of active ingredient content.	59
Table(2).	Effect of storage conditions on the active ingredient content for Lambda Cyhalothrin 5%.	59
Table(3).	The physico-chemical properties of Lambda –Cyhalothrin technical grade	60
Table(4).	The physico-chemical properties of the tested solvents	60
Table(5).	The % Solubility of tested solvents with tested adjuvants	61
Table(6).	The physico-chemical properties of the tested Adjuvants and surfactants	63
Table(7).	The physico-chemical properties of lambda cyhalothrin 5% formulations	69
Table(8).	Determination of the physico-chemical properties of the spray solution of the locally formulated Lambda Cyhalothrin 5% at the field dilution rate.	72
Table(9).	Effect of the locally formulated insecticide on the mortality of 4th instar larvae, <i>Spodoptera littoralis</i>	75
Table (10).	Dissipation rate of the local formulated pesticide residues (lambd cyhalothrin 5% OD) on cotton leaves	78
Table(11).	Dissipation rate of the local formulated pesticide residues (lambda cyhalothrin 5% EC) on cotton leaves	81
Table(12).	Dissipation rate of the local formulated pesticide residues (lambda cyhalothrin 5% EW) on cotton leaves	84

LIST OF FIGURES

Fig.No.		Page
Fig.(1):	Clibration curve of lambda cyhalothrin with GC analysis	55
Fig.(2):	Residue levels and dissipation behavior of lambda	
	cyhalothrin 5% (OD) on cotton crop under field conditions.	78
Fig.(3):	Residue levels and dissipation behavior of lambda	
	cyhalothrin 5% (EW) on cotton crop under field	
	conditions.	81
Fig.(4):	Residue levels and dissipation behavior of lambda	
	cyhalothrin 5% (EC) on cotton crop under field conditions.	84

INTRODUCTION

Since the dawn of time mankind has had two primary goals - obtaining enough food to survive and improving the quality of life. The single most important task facing a society is the production of food to feed its population. A country or society has to feed its people before it can devote resources to education, arts, technology or recreation. In some areas of the world this remains the primary focus of the entire population, producing or accessing food to feed its people. In these countries food can account for over 60% of annual income needs. Today, more than 60% of our population is involved in agriculture, producing enough food for not only our population, but for others around the world. A basic reason for our ability to increase our productivity is our ability to control pests, weeds, insects and pathogens using crop protection products (**Anjan** *et al.*, **2009**).

Pesticides are still going to be used for many years to ensure food supply for the ever growing world population. Great potential still exists to improve their efficiency and reduce their input into the environmental and food chain (Gasic *et al.*, 2011).

Pesticides, as a key component of Integrated Pest Management (IPM), help out an important role in increasing agricultural production, but their abuse has led to the environmental problems including health hazards to humans (**Akbar** *et al.*, **2010**).

Pesticide formulation is the process of transforming a pesticidal chemical (active ingredient) into a product, which can be applied by practical methods to permit its effective, safe, and economical use (**De** *et al.*, 2013).

Recently the pesticide industry has made a good progress in terms of development and production of low risk environmental friendly pesticide formulations, although pesticides are still mainly available in conventional formulations such as dustable powders, wettable powders, emulsifiable concentrates, solutions, etc. Such conventional formulations could cause problems related to environmental protection, leaving residues in ecosystem, food, final products, etc. Hence, there is a growing

demand for use of environmental friendly water based formulations as oil-in-water emulsions, aqueous suspension concentrates, oil dispersion, aqueous capsule suspensions and so on instead of conventional pesticide formulations. Thus, formulation scientists now are facing the challenge to explore novel green or environmental friendly agrochemical formulation to improve the biological efficacy and develop technique that can be employed to reduce pesticide use while maintaining plant protection (Kumar et al., 2016).

Emulsifiable agricultural chemical formulations have been conveniently and widely used for a very long time. However, emulsifiable solutions need large amounts of organic solvents such as toluene, dimethyl benzene, etc. which are harmful to man and his environment. Hence, there is a demand for water-based, granular or control-release new pesticide formulations, which are clean and safe and have minimal impact on the environment (**Feng** *et al.*, **2009**).

Oil-in-water emulsions are now receiving considerable attention as they have reduced or eliminated volatile organic compounds (VOCs) for safer handling. Water based, oil-in-water emulsions can have significant advantages over emulsifiable concentrates in terms of cost and safety in manufacture, transportation and use. The active ingredient must have very low water solubility to avoid crystallization issues. One of the latest formulation types is oil dispersions (ODs) this technology allows very efficient and environmentally friendly agrochemical formulations. In ODs the solid active ingredient is dispersed in the oil phase such as mineral oils, vegetable oils or esters of vegetable oils, making it especially suitable for water-sensitive or non-soluble active ingredients and give a stable emulsion after dilution with water (Hazra, 2015).

Within the range of currently available agro-chemical products, there exists a unique group of products called adjuvants. These products have the ability to greatly influence the performance of pesticidal materials by working through means of both physical and chemical processes. Clearly, the expansion of world agriculture production will be