PREVALENCE OF ASYMPTOMATIC PERIPHERAL ARTERIAL DISEASE IN TYPE 2 DIABETIC PATIENTS

Thesis
Submitted for partial fulfillment of master degree in Endocrinology & metabolism

By Haythem Ahmed Kamal Hamed (M.B.B.CH)

Supervised By: **Professor. Mohamed Reda Halawa**

Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University

Dr. Mona Mohamed Abdelsalam

Assistant Professor of Internal Medicine and Endocrinology
Faculty of Medicine, Ain Shams University

Dr. Yara Mohamed Fid

Assistant Professor of Internal Medicine and Endocrinology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2014

سورة البقرة الآية: ٣٢

First of all, I am deeply grateful to ALLAH.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Mohamed Reda Halawa**, Professor of Internal Medicine and endocrinology Faculty of Medicine Ain Shams University.

I am very grateful to **Prof. Dr. Mona Mohamed**Abdelsalam Assistant Professor of Internal Meidcine
Faculty of Medicine Ain Shams University for her positive
supervision during the preparation of this research and for the
extensive time and effort to offer every possible help to complete
this work.

Special appreciation to **Dr. Yara Mohamed Eid**Assistant Professor of Internal Medicine Faculty of Medicine
Ain Shams University for her kind advice, valuable instructions
and continuous support which was the corner stone in the
completion of this work.

Last but not least, I would like to present a lot of thanks to my family, friends, and to my colleagues, whose without their help and support, this work could not come to birth.

TABLE OF CONTENTS

Title	Page
Introduction	1
Aim of the Work	3
Review of Literature	
Diabetes milletus	4
 Mechanism of Macrovascular diabetes 	-
Peripheral arterial disease	43
Patients And Methodology	91
Reuslts	97
Discussion	119
Summary and conclsions	129
Recommendations	130
References	131

LIST OF TABLES

Table No.	Title Page No.
Table (1):	Other specific types of diabetes6
Table (2):	Major risk factors for type 2 diabetes18
Table (3):	Criteria for the diagnosis of diabetes19
Table (4):	Comparison between the 3 major ACCORD, ADVANCE and VADT trials
Table (5):	Clinical staging of PAD56
Table (6):	Recommendations for ABI mesurement
Table (7):	Demographic and clinical characteristics of study participants99
Table (8):	Laboratory data of the studied subjects
Table (9):	results of ABI measurement in the studied population101
Table (10):	Comparison between smoker and nonsmokers as regard ABI values102
Table (11):	Comparison between type 2 diabetes treatment (oral anti diabetic and insulin therapy) as regard ABI values103
Table (12):	Comparison between hypertensives and non hypertensives as regard ABI values

Table (13):	Comparison between Monofilament sensation as regard ABI values	105
Table (14):	Comparison between patients with and without trophic changes as regard ABI values)	106
Table (15):	correlation of different descriptive data in relation to ABI	107
Table (16):	Comparison between group A and B in relation to ABI.	112
Table (17):	Comparison between group A and B in relation to ABI.	113

List of Figures

Page	Title	Fig. No
Figure (1):	Number of people with diabetes by IDF	9
Figure (2):	Top 10 countries of number of people w diabetes (20-79 years)	
Figure (3):	The Edinburgh Claudication Questionnaire	e60
Figure (4):	Method of mesuring ABI	64
Figure (5):	Sites of monofilament sensation testing	92
Figure (6):	Handheld doppler w/8 MHz probe	93
Figure (7):	Comparison between smoker a nonsmokers as regard ABI values	
Figure (8):	Comparison between type 2 diabetreatment (oral anti diabetic and insutherapy) as regard ABI values	ılin
Figure (9):	Comparison between hypertensives and n hypertensives as regard ABI values	
Figure (10)	: Comparison between Monofilame sensation as regard ABI values	
Figure (11)	: Comparison between patients with a without trophic changes as regard A values	ABI
Figure (12)	: Correlation between smoking duration a ABI.	
Figure (13)	: Correlation between diabetes duration a ABI.	
Figure (14)	: Correlation between hypertension duration and ABI values	
Figure (15)	: Correlation between BMI values and A	

Figure (16):	Correlation between waist circumference and ABI values110
Figure (17):	Comparison of gender distribution in the 2 groups in relation to ABI values114
Figure (18):	Comparison of smoking distribution in the 2 groups s
Figure (19):	Comparison of T2 DM treatment distribution in the 2 groups
Figure (20):	Comparison of history of hypertension in the 2 groups
Figure (21):	Comparison the history of cerebrovascular stroke between the 2 groubs
Figure (22):	Comparison of history of coronary artery disease CAD between the 2 groups116
Figure (23):	Comparison of Monofilament sensation testing between the 2 groups
Figure (24):	Comparison of the presence of trophic changes between the 2 groups
Figure (25):	Comparison of family history of PAD between the 2 groups

LIST OF ABBREVIATION

Abb.	Full term
ABI	Ankle-brachial index
ACS	Acute oronary syndrome
ADA	American diabetes association
AGEs	Advanced glycation end products
AMP	Adenosine monophosphate
AMPK	Adenosine monophosphate kinase
BH4	Tetrahydrobiopterin
BMI	Body mass index
BP	Blood pressure
CAD	Coronary artery disease
CLI	Critical limb ischemia
CRP	C-reactive protein
CVD	Cardiovascular disease
CVS	Cerebrovascular disease
DCCT	Diabetes Control and Complications Trial
DPN	Distal polyneuropathy
EASD	European Association for the Study of Diabetes
ECD	Endothelial cell dysfunction
ET-1	Endothelin -1
FPG	Fasting plasma glucose
GWAS	Genome-wide association studies
GBM	Glomerular basement membrane
GDM	Gestational diabetes mellitus
GEnC	Glomerular endothelial cell
HDL	High density lipoprotein cholesterol
HNF	Hepatocyte nuclear factor
ICAM	Intercellular adhesion molecule
IDDM	Insulin dependent diabetes mellitus

LIST OF ABBREVIATION cont.

Abb.	Full term
<u>IDF</u>	International Diabetes Federation
IFG	Impaired fasting glucose
IGF-1	Insulin-like growth factor -1
IGT	Impaired glucose tolerance
IHD	Ischemic heart disease
IL-6	Interleukin-6
IRS	Insulin receptor substrate
LDL	Low density lipoprotein cholesterol
MI	Myocardial infarction
MMP	Matrix metalloproteinase.
NADP	Nicotinamide adenine dinucleotide
phosphate	
NGT	Normal glucose tolerance
NIDDM	Non insulin dependent diabetes mellitus
NO	Nitric Oxide
NGSP	National Glycohemoglobin Standardization Program
OGTT	Oral glucose tolerance test
PAD	Peripheral arterial disease
PAI-1	Plasminogen activator inhibitor-1
PCOD	Polycystic ovary disease
PDGF	Platelet-derived growth factor
PKC	Protein kinase C
PPAR	Peroxisome proliferator-activated receptor
PPG	Prandial plasma glucose
PVD	Peripheral vascular disease
ROS	Reactive oxygen species
TGF-β	Transforming growth factor-beta
SOCS	Suppresor of cytokine signaling

LIST OF ABBREVIATION cont.

Abb.	Full term
TCF 7L2	Transcription factor 7
TGs	Triglycerides
TNF	Tumour necrosis factor
TZDs	Thiazolidinediones
USDA	U.S. Department of Agriculture.
VCAM	Vascular cell adhesion molecule
VSMC	Vascular smooth muscle cell
VWF	von Willebrand factor
WC	Waist circumference
WHR	Waist hip ratio
WHO	World health organization

INTRODUCTION

piabetes mellitus (DM) prevalence is increasing worldwide. The number of people with DM is expected to double from 175 million in 2000 to 353 million in 2030. The largest increase is expected to occur in developing countries (*Yach D, et al 2006*).

Atherosclerosis is a progressive process affecting multiple vascular beds; its clinical consequences, which include coronary artery disease (CAD), cerebrovascular disease, and peripheral arterial disease (PAD) - occlusive arterial disease of the lower extremities-, are potentially life threatening *Munger MA*, et al 2004. Atherosclerotic disease in one vascular bed indicates possible disease in others (*Ness J*, et al 1999).

Epidemiological studies have confirmed an association between diabetes and an increased prevalence of PAD (*Donahue RP*, et al 1992).

Peripheral arterial disease in patients with diabetes adversely affects quality of life and is associated with substantial functional impairment (*Vogt MT*, *et al 1994*). Reaching up to ischemic ulceration of the foot and risk of limb loss (*Hiatt WR.2002*). However, many patients with PAD are

asymptomatic, or have atypical exertional symptoms. (Schainfeld RM. 2001).

The true prevalence of PAD in people with diabetes has been difficult to determine, as most patients are asymptomatic, many do not report their symptoms, screening modalities have not been uniformly agreed upon, and pain perception may be blunted by the presence of peripheral neuropathy. The reported prevalence of PAD is also affected by the methods by which the diagnosis is sought. A more accurate estimation of the prevalence of PAD in diabetes should rely upon a validated and reproducible test. Such a test is the ankle-brachial index (ABI).

(American Diabetes Association 2003)

In studies using the ankle-brachial index (ABI), which is the preferred screening technique, the prevalence of PAD (defined as an ABI \leq 0.90) in diabetic individuals ranges from 20% to 30% (*Elhadd TA*, *et al 1999*).

> Him of the Work

AIM OF THE WORK

Study the prevalence of asymptomatic peripheral arterial disease in a cohort of Egyptian patients with type 2 diabetes using ABI

Chapter 1

DIABETES MELLITUS

Definition:

Diabetes mellitus is a group of metabolic diseases of multiple aetiologies characterized by hyperglycaemia together with disturbances of carbohydrate, fat, and protein metabolism resulting from defects in insulin secretion, insulin action, or both. The chronic hyperglycaemia of diabetes is associated with microvascular damage affecting, particularly, eyes, kidneys, nerves, and heart, together with an increased risk of macrovascular disease (WHO 2011).

Classification: (WHO 2011)

The classification of diabetes includes four clinical classes:

- 1-Type 1 diabetes (results from β -cell destruction, usually leading to absolute insulin deficiency)
- 2-Type 2 diabetes (results from a progressive insulin secretory defect on the background of insulin resistance)
- 3-Other specific types of diabetes due to other causes, e.g., genetic defects in b-cell function, genetic defects in insulin action, diseases of the exocrine pancreas (such as cystic fibrosis), and drug- or chemical-induced (such as in the treatment of HIV/AIDS or after organ transplantation)