EFFECT OF AEROBIC VERSUS RESISTIVE EXERCISES ON ENERGY EXPENDITURE IN SEDENTARY MALES

Thesis
Submitted in Partial Fulfillment for the Requirement of
Master Degree in Physical Therapy

By AHMED MAHDI AHMED

B.Sc. in Physical Therapy
Department of Physical Therapy for
Cardiovascular/ Respiratory Disorder & Geriatrics

SUPERVISORS

Prof. Dr. Zahra Hassan Serry

Assistant Professor of Physical Therapy for Cardiovascular/ Respiratory Disorder & Geriatrics Faculty of Physical Therapy Cairo University

Dr. Sherin Hassan Mohamed

Lecturer of Physical Therapy for Cardiovascular/ Respiratory Disorder & Geriatrics Faculty of Physical Therapy Cairo University

Faculty of Physical Therapy Cairo University 2010

ACKNOWLEDGEMENT

First of all, **Thanks to Allah** who gave me the mind, and granted me to finish this work.

I would like to express my deepest gratitude and thanks to **Prof. Dr. Zahra Mohammed Hassan Serry**, Professor of Physical Therapy for Cardiovascular/Respiratory Disorder & Geriatrics, for her kind supervision and valuable advices throughout the study.

My gratitude appreciation to **Prof. Dr. Zeinab Mohammed Helmy**, Professor and Chairman of the department of Physical
Therapy for Cardiovascular/Respiratory Disorder & Geriatrics.
Faculty of Physical Therapy, Cairo University, for her great support giving me the confidence and encouragement to finish this work.

My sincere thanks to **Dr. Sherin Hassan**, Lecturer of Physical Therapy for Cardiovascular/Respiratory Disorder & Geriatrics, who stood beside me step by step and has made enormous effort to make this work succeed.

Effect of aerobic versus resistive exercises on energy expenditure in sedentary males. Ahmad Mahdi Ahmad/ Demonstrator of Physical Therapy for Cardiovascular/Respiratory Disorder & Geriatrics Department. Faculty of Physical Therapy. Cairo University-Supervisors: **Prof. Dr. Zahra Mohammed Hassan Serry**, Assistant Professor of Physical Therapy for Cardiovascular/Respiratory Disorder & Geriatrics Department. Faculty of Physical Therapy. Cairo University. **Dr. Sherin Hassan Mohamed**, Lecturer of Physical Therapy for Cardiovascular/ Respiratory Disorder & Geriatrics Department. Faculty of Physical Therapy. Cairo University. Master Thesis. 2010

ABSTRACT

Purpose: The study was conducted to compare between the effect of aerobic versus resistive exercises on energy expenditure in sedentary overweight males. Subjects: Thirty overweight males with age ranged from 18-25 years, their body mass indices ranged between 25-30 kg/m². Methods: Subjects were randomly assigned to two equal groups. Aerobic training group and circuit weight training group. Both groups trained 3 times per week for 12 weeks. The aerobic training was in the form of interval training at 75-85 % of maximum heart rate, and the circuit weight training composed of 11 stations of resistive exercises performed at 70-80% 1RM with 30 seconds rest in between. The subjects underwent cardiopulmonary exercise test to measure VO_{2max}, energy expenditure and time to fatigue before and after the training programs. Results: For aerobic training group, there was a significant increase in VO_{2max} by 22%, energy expenditure by 24% and time to fatigue by 41% after training. For circuit weight training group, there was a significant increase in VO_{2max} by 16%, energy expenditure by 16% and time to fatigue by 29% after training. Regarding comparison between the two groups, the aerobic training group revealed a significant increase in all measured variables than the circuit weight training group. Conclusion: Both aerobic training and circuit weight training are effective interventions to increase VO_{2max}, energy expenditure as well as time to fatigue in overweight sedentary subjects. However, the aerobic training is more effective than circuit weight training in improving those variables for overweight sedentary subjects.

Key words: aerobic exercise, resistive exercise, energy expenditure, VO_{2max} , overweight sedentary males

CONTENTS

Ackno	wledgm	ent					
Abstra	ict						
List of	tables						
List of	figures.						
List of	abbrevi	ations.					
Chapt	ter (I): I	NTOD	OUCTION				
	Statemen	nt of th	ne problem				
	Purpose	of the	study				· · · · · · · · · · · · · · · · · · ·
	Significa	ance of	f the study				
	Hypothe	esis					
	Definition	on of te	erms				
			EWOF LITE				
	Energy l	oalance	2				
	The calc	ric bal	ance equation	n			
	Basal m	etaboli	c rate				
	Factors a	affectii	ng resting me	tabolic rate			
	Exercise	traini	ng and resting	g metabolic	rate		
	Effect	of	resistance	exercise	on	resting	energy
	expendit	ture					
	Effect	of	aerobic	training	on	resting	energy
	expendit	ture					
	Resting	metabo	olic rate in ov	erweight sul	bjects		
	Thermo	ogenes	sis				
	Physical	activi	ty and energy	balance			
			ercise oxygei				

Excess	post-exercise	oxygen	consumption	with
resistive	exercise	• •	-	
	cation of energy exp			
	lorimetry			
	calorimetry			
	ircuit spirometry			
	cuit spirometry			
New era	for measuring energ	gy expenditur	e	
Maximal	oxygen consumption	on		
Factors li	imiting VO _{2max}			
Adaptatio	ons to aerobic traini	ng		
Overweiş	ght and obesity			
Diagnosi	s			
Aetiolog	y of overweight and	obesity		
Physiolog	gic effects of overw	eight and obe	esity	
Effect of	overweight and obe	esity on aerob	ic Capacity	
Exercise	prescription for the	overweight a	nd obese	
Circuit w	eight training			
The (AC	CSM 1998) guideli	ines for dev	eloping and mair	ntaining
cardiores	piratory fitness			
hapter III: M	IATERIALS AND	METHODS	J	
Subjects.				
Exclusion	n criteria			
Instrume	ntation			
Evaluatir	ng equipment			
Training	equipment			
Procedur	es			
Subject p	oreparations			

Evaluation procedures	53
Training procedures	56
Chapter (IV): RESULTS	62
Demographic characteristics of the subjects	62
Results of VO_{2max} for each group before and after training and	
comparison between the two groups	65
Results of the time to fatigue for each group before and after	
training and comparison between the two groups	
Results of energy expenditure for each group before and after	
training and comparison between the two groups	71
Chapter (V): DISCUSSION	74
Chapter (VI): SUMMARY, CONCLUSION AND RECOMMENDATIONS	85
References	88
Arabic summary	

LIST OF TABLES

Table No.	Title	Page
Table (1):	Overweight and obesity classifications in BMI (Kg/m²)	36
Table (2):	The recommended human dietary portions of carbohydrates, fats and proteins	38
Table (3):	Demographic characteristics of the subjects in the two groups	63
Table (4):	Comparison of VO_{2max} between group (A), the aerobic training group and group (B), the circuit weight training group, before and after the exercise programs and relative changes % for each group	66
Table (5):	Comparison of the time (in minutes) to fatigue between group (A) and group (B); before and after the exercise programs and relative changes % for each group	69
Table (6):	Comparison of energy expenditure (Kcal/Kg/min) between group (A) and group (B); before and after the exercise programs and relative changes % for each group	72

LIST OF FIGURES

Figure No.	Title	Page		
Fig.(1):	Total energy expenditure	10		
Fig. (2):	Measurement of aerobic metabolism	22		
Fig. (3):	Direct calorimetry measurement	23		
Fig. (4):	Subject undergoing measurement of aerobic metabolism	25		
Fig. (5):	Bag technique	27		
Fig. (6):	The portable spirometer	28		
Fig. (7):	Cardiopulmonary exercise testing unit	50		
Fig. (8):	Pulse minder	50		
Fig. (9):	Treadmill	52		
Fig. (10):	Body Master; Circuit Master exerciser	52		
Fig. (11):	Cardiopulmonary exercise testing.	55		
Fig. (12):	Aerobic training	58		
Fig. (13):	Chest press exercise	59		
Fig. (14):	Arm curl exercise	59		
Fig. (15):	Leg Extension exercise			
Fig. (16):	Horizontal pectoralis adduction exercise	60		

Fig. (17):	Lateral pull down exercise	61
Fig. (18):	Demographic characteristics of the subjects in the two groups	64
Fig. (19):	Statistical analysis for VO_{2max} before and after the exercise programs for each group	67
Fig. (20):	Relative changes % of VO_{2max} for the two groups	67
Fig. (21):	Statistical analysis for the time (in minutes) to fatigue, before and after the exercise programs for each group	70
Fig. (22):	Relative changes % of the time to faigue	70
Fig. (23):	Statistical analysis for energy expenditure (Kcal/Kg/min) before and after the exercise programs for each group	73
Fig. (24):	Relative changes % of energy expenditure for the two groups	73

LIST OF ABBREVIATIONS

DIT Diet-induced thermogenesis

RMR Resting metabolic rate

REE Resting energy expenditure

TEE Total energy expenditure

VO_{2max} Maximum oxygen consumption

CWT Circuit weight training

RT Resistance training

PHEE Physical activity energy expenditure

KCAL Kilocalories

EPOC Excess post exercise oxygen consumption

BF% Body fat percentage

FFW Fat free weight

HR Heart rate

TEF Thermic effect of feeding

ATP Adenosine triphosphate

CP Creatine Phosphate

GH Growth hormone

CO Cardiac output

a-vO₂ dif Arteriovenous oxygen difference

PFK Phosphofructokinase

LDH Lactate Dehydrogenase

BMI Body mass index

WHO World Health Organization

ACSM American College of Sports Medicine

RM Repetition maximum

CT Continuous training

IT Interval training

ADP Adenosine Diphosphate

AMP Adenosine Monophosphate

1-RM One repetition maximum

تأثير التمارين الهوائية مقابل تمارين المقاومة على استهلاك الطاقة لدى الذكور غير النشيطين. أحمد مهدى أحمد، معيد بقسم العلاج الطبيعي لاضطرابات الجهاز الدوري التنفسي والمسنين، كلية العلاج الطبيعي، جامعة القاهرة. المشرفون: أ.د./زهرة محمد حسن سرى، أستاذ مساعد بقسم العلاج الطبيعي لاضطرابات الجهاز الدوري التنفسي والمسنين، كلية العلاج الطبيعي، جامعة القاهرة. د/شيرين حسن مهني، مدرس بقسم العلاج الطبيعي لاضطرابات الجهاز الدوري التنفسي والمسنين، كلية العلاج الطبيعي، جامعة القاهرة. درجة الماجستير – ٢٠١٠.

المستخلص

الهدف من هذا البحث هو مقارنة استهلاك الطاقة الناتجة عن التمارين الهوائية مقابل استهلاك الطاقة الناتجة عن تمارين المقاومة لدى الذكور غير النشيطين. وقد أجرى هذا البحث على ثلاثين طالباً مصابون بزيادة الوزن من كلية العلاج الطبيعي، جامعة القاهرة، تتراوح أعمارهم من ١٨ إلى ٢٥ سنة وقد تم تقسيمهم إلى مجموعتين متساويتين: مجموعة (أ) مجموعة التمارين الهوائية ومجموعة (ب) مجموعة تمارين المقاومة. وكانت مدة برنامج التمرينات في كلتا المجموعتين ١٢ أسبوعاً بمعدل ٣ مرات أسبوعياً. وقد تم قياس أقصى معدل لاستهلاك الأكسجين واستهلاك الطاقة والوقت المستنفذ لحدوث الإرهاق من خلال اختبار الجهاز الدورى التنفسي قبل بدء الدراسة وبعد الانتهاء منها. وقد أثبتت النتائج زيادة ذات دلالة إحصائية في كلتا المجموعتين بالنسبة لكل المتغيرات التي تم قياسها قبل بدء الدراسة، وبمقارنة النتائج بين المجموعتين معاً أثبتت الدراسة أن تأثير التمارين الهوائية له أفضلية ذات دلالة إحصائية على تمارين المقاومة في زيادة أقصى معدل لاستهلاك الأكسجين واستهلاك الطاقة والوقت المستنفذ لحدوث الإرهاق.

الكلمات الدالة: التمارين الهوائية، تمارين المقاومة، استهلاك الطاقة، الذكور المصابون بزيادة الوزن، أقصى معدل لاستهلاك الأكسجين، الوقت المستنفذ لحدوث الإرهاق.

CHAPTER I INTRODUCTION

Total energy Expenditure is made up of three components: resting metabolism, diet-induced thermogenesis (DIT), and physical activity. Resting metabolic rate (RMR) is defined as the energy expenditure necessary to maintain the physiological processes in the post-absorptive state and depending on the level of physical activity may represent approximately 60 to 70% of total energy expenditure. DIT refers to the increase in metabolic rate above resting levels due to food intake and corresponds to approximately 10% of total energy expenditure. Physical activity is a variable component and is related to the energy expenditure necessary for skeletal muscle activity. In sedentary individuals it represents approximately 15% of total energy expenditure, whereas in physically active individuals this can reach 30% (Meirelles and Gomes, 2004).

Resting energy expenditure (REE) is very important because it represents a significant share of the total energy expenditure. Up to 80% of daily energy expenditure occurs at rest and relative to adipose tissue, lean body mass has a high basal metabolic rate. Hence, preservation of or increasing lean body mass is an effective way of increasing daily energy expenditure and thereby decreasing fat mass (Klijin et al., 2007).

Overweight and obesity are important public health problems and are associated with many serious health conditions. The risk of developing overweight and obesity depends on lifestyle factors such as food intake and physical activity levels. Treatment for overweight and obesity therefore commonly involves diet and exercise. Exercise has been demonstrated to have a positive effect on body weight and cardiovascular disease risk factors in people with overweight or obesity. Exercise also improves health even if no weight is lost (Shaw et al., 2006).

Evidence indicates that weight loss is qualitatively more effective when obtained by physical activity rather than diet only. Any type of resistive exercise that improves lean body mass should elicit a reduction in body weight since this body composition component is positively associated resting energy expenditure (REE). On the other hand, aerobic exercise might be used to directly oxidize fat. In this respect, circuit weight training (CWT), a type of resistive exercise characterized by working different muscle groups on each using a mixed metabolism, and aerobic exercise are two types of exercise that can be used for the prevention or the treatment of obesity. CWT and aerobic exercises have been associated with weight loss, maintenance of (REE), and an increase in VO_{2max} . CWT is also related to strength gain (Fett et al., 2009)

Individuals who regularly participate in aerobic exercise have higher body composition-adjusted REE than those who are sedentary, at least in part, because of increased sympathetic tone (Hunter et al., 2006).

Aerobic exercise training has been associated consistently with increased fat mass losses but has only a limited effect on maintenance of fat free mass (**Hunter et al., 2008**).

Resistance training (RT) induces an increase in skeletal muscle mass, the primary tissue for glucose and triglyceride metabolism; therefore it contributes to the maintenance of or increases in basal or resting metabolic rate. Such an increase in metabolic rate may substitute for the increase in caloric expenditure produced by aerobic training, thus assisting in weight control. Conventional resistance training consists of lifting heavier weights with longer rest periods (a greater anaerobic component), whereas circuit weight training consists of lifting lighter weights with shorter rest periods between exercises, introducing a greater aerobic component to the workout (Mark et al., 2007).

Endurance exercise is traditionally viewed as the primary means of increasing aerobic capacity. Resistance exercise, in contrast, is not typically viewed as a primary means for improving cardiorespiratory endurance (Vincent et al., 2002)

Energy expenditure is transiently increased due to the direct and short term carryover effects of physical exercises. However, a body of literature has accumulated and suggested that exercise training