

Faculty of Science
Chemistry Department

# Photocatalytic Degradation of Various Toxic Pollutants on the Surface of Nanoparticles

#### **A Thesis**

Submitted By

#### Mai Hussein Abd El Khalek

B.Sc., Chemistry, Ain Shams University, ۲۰۱۲
Submitted for the degree of master in science
(Inorganic and Analytical Chemistry)

Chemistry Department, Faculty of Science, Ain Shams University
Supervisors

# **Prof. Dr. Mohamed Fathy El-Shahat**

Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University

#### Assoc. Prof. Mohamed Abd El Hay Ahmed

Associate Professor of Physical Chemistry, Faculty of Science, Ain Shams University

#### Assoc. Prof. Michel Fahmy Abd EL Messih

Associate Professor of Physical Chemistry, Faculty of Science, Ain Shams University



Faculty of Science Chemistry Department

# Photocatalytic Degradation of Various Toxic Pollutants on the Surface of Nanoparticles

#### **A Thesis**

Submitted By

#### Mai Hussein Abd El Khalek Mohamed

Submitted for the degree of master in science (Inorganic and Analytical Chemistry)

| <u>Thesis supervisors</u>                    | <u>Signature</u> |
|----------------------------------------------|------------------|
| Prof. Dr. Mohamed Fathy El-Shahat            |                  |
| Prof. of Analytical and Inorganic Chemistry. |                  |
| Faculty of Science, Ain Shams University     |                  |
| Assoc. Prof. Mohamed Abd El Hay Ahmed        |                  |
| Associate Professor of Physical Chemistry.   |                  |
| Faculty of Science, Ain Shams University     |                  |
| Assoc. Prof. Michel Fahmy Abd EL Messih      |                  |
| Associate Professor of Physical Chemistry.   |                  |
| Faculty of Science, Ain Shams University     |                  |

Prof. Dr. Ibrahim.H.A.Badr

Head of Chemistry Department Faculty of Science Ain Shams University



كلية العلوم

## قسم الكيمياء

ازالة الملوثات السامة باستخدام طرق التكسير الضوئي بالمواد النانو مترية

رسالة مقدمة من

## مى حسين عبد الخالق محمد

بكالوريوس العلوم- قسم الكيمياء-جامعة عين شمس (٢٠١٢) للحصول على

ماجستير في العلوم (الكيمياء غير العضوية و التحليلية)

مقدمة إلى

قسم الكيمياء - كلية العلوم - جامعة عين شمس الكيمياء - كلية المشرفون

د / محمد عبد الحي احمد

أ.د/محمد فتحى الشحات

أستاذ مساعد الكيمياء الفيزيائية كلية

أستاذ الكيمياء التحليلية وغير العضوية كلية

العلوم- جامعة عين شمس

العلوم- جامعة عين شمس

## د. ميشيل فهمي عبد المسيح

أستاذ مساعد الكيمياء الفيزيائية- كلية العلوم-جامعة عين شمس



## كلية العلوم قسم الدراسات العليا و البحوث

رسالة : ماجستير

اسم الباحث : مي حسين عبد الخالق

عنوان الرسالة: ازالة الملوثات السامة باستخدام طرق التكسير الضوئي بالمواد النانو مترية اسم الدرجة العلمية: ماجستير في العلوم (غير العضوية و التحليلية)

#### لجنة الاشراف:

أ. د. محمد فتحى الشحات أستاذ الكيمياء التحليلية وغير العضوية- كلية العلوم-جامعة عين شمس عين شمس

د. محمد عبد الحي محمد أستاذ مساعد الكيمياء الفيزيائية -كلية العلوم-جامعة عين شمس

د. ميشيل فهمي عبد المسيح أستاذ مساعد الكيمياء الفيزيائية - كلية العلوم - جامعة عين شمس

### لجنة التحكيم:

أ. د. محمد فتحى الشحات أستاذ الكيمياء التحليلية و غير العضوية كلية العلوم جامعة عين شمس عين شمس

أ.د/ محمد محمد رشاد الشربيني أستاذ علوم و هندسة المواد – مركز بحوث و تطوير الفلزات د.غادة محمد نظير محمد أستاذ مساعد بقسم الفيزيقا و الرياضيات الهندسية –

كلية الهندسة-جامعة عين شمس

#### الدراسات العليا

ختم الاجازة أجيزت الرسالة بتاريخ / / موافقة مجلس الكلية / /



كلية العلوم قسم الكيمياء

اسم الطالب : مي حسين عبد الخالق

الدرجة العلمية : ماجستير في العلوم (غير العضوية و التحليلية)

القسم التابع له : قسم الكيمياء

اسم الكلية : كلية العلوم

الجامعة : جامعة عين شمس

سنة التخرج : ٢٠١٢

سنة المنح :

## <u>شــکر</u>

الشكر و الحمد لله عز وجل الذي أنار لي الدرب، وفتح لي أبواب العلم وأمدني بالصبر والإرادة.

خالص الشكر والتقدير للسادة الأساتذة الذين قاموا بالاشراف على هذه الرسالة وهم:

## أ. د. محمد فتحى الشحات

أستاذ الكيمياء التحليلية وغير العضوية- كلية العلوم - جامعة عين شمس

## د. محمد عبد الحي احمد

أستاذ مساعد الكيمياء الفيزيائية- كلية العلوم- جامعة عين شمس

## د. ميشيل فهمي عبد المسيح

أستاذ مساعد الكيمياء الفيزيائية- كلية العلوم- جامعة عين شمس

## كما أشكر:

الاساتذة الافاضل أ.د زينب محمد احمد ابو جمرة أستاذ الكيمياء الفيزيائية، كلية العلوم ، جامعة عين شمس و أ.د اشرف عبد العاطي محمد أستاذ الكيمياء التحليلية والغير عضوية كلية العلوم – جامعة عين شمس وكذالك اشكر الاساتذة الافاضل وجميع العاملين بقسم الكيمياء، كلية العلوم ، جامعة عين شمس على كل المساعدة التي قدموها وتقديم كافة التسهيلات والدعم لتنفيذ هذا العمل.

#### Acknowledgements

I begin my hearty gratitude towards ALLAH for his amazing grace of blessing in my life which cannot be expressed or limited to a single word.

Great thanks to ALLAH for setting my thesis under supervision of **Prof. Dr. Mohamed Fathy El-Shahat** (Professor of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University), for his valuable guidance, supervision, strong motivation, advices and constant encouragement during the course of research work.

I am much indebted to **Dr. Mohamed Abd El Hay Ahmed**, (Associate Professor of Physical Chemistry, Faculty of Science, Ain Shams University), for suggesting the topic of this work and valuable assistance during all stages of this work.

Great thanks to **Dr. Michel Fahmy Abdel-Messih** (Associate Professor of Physical Chemistry, Faculty of Science, Ain Shams University) for his encouragement, fruitful discussion, continuous assistance and guidance.

Special thanks are given to prof. Dr. Zeinab Mohamed Ahmed Abou-Gamra (Professor of Physical Chemistry, Faculty of Science, Ain Shams University) and prof. Dr. Ashraf AbdelAaty Mohamed (Professor of Analytical and Inorganic Chemistry and vice dean of Faculty of Science, Ain Shams University) for their moral support and encouragement.

My cordial gratitude to my family for their patience and support.

#### **Abstract**

In recent years, photocatalysis has been a promising solution for environmental remediation, titanium dioxide (TiO<sub>2</sub>) is usually the choice for photocatalytic applications due to the best activity as well as the stability when compared to other photocatalysts. Meanwhile TiO<sub>2</sub> has many advantages such as high reactivity, low toxicity and low cost. However, there are two major drawbacks have hindered its usage in practical applications, the first one is the large band gap of  $TiO_2$  (3-3.2) eV) that has limited its effective use of solar energy; the second is the rapid recombination of photogenerated electron/hole pairs that decrease its activity. In this context, platinum (Pt) is one of the most active noble metals for photocatalytic enhancement of TiO<sub>2</sub>, which exhibits effective Schottky barrier height, which can act as stronger electron traps to facilitate electron-hole separation. Additionally, Pt has a unique property of the surface plasmon resonances phenomena, therefore this property can help in extending light absorbance towards the visible light region.

As of late, the widespread presence of chemicals, for example, dyes, heavy metals, herbicides, pesticides, aliphatic and aromatic detergents, arsenic compounds, solvents, degreasing agents, volatile organics, and chlorophenols show a serious risk to the environment. When such chemicals pollute water sources, they become dangerous to environment. For instance, 15% of the total dye is lost during the dying process and discharged in waste waters. Degradation of these pollutants at the surface of TiO<sub>2</sub> photocatalyst is an important photocatalysis application.

In the present study, a modified titania was prepared using sol-gel method then doped with platinum through incipient wetness method to attain its application in photocatalytic degradation of cationic Rhodamine B and anionic Methyl orange dyes in visible light region. The prepared titania showed good physicochemical property owning to the role of chitosan as template, the crystalline size of the prepared samples are in the nano sized particles within the range of spherical particles 11.4-14.6 of the prepared nm, photocatalysts reveals the role of chitosan in tailoring the Platinum has great role shape. a in enhancing photodegradation process through electron hole separation of TiO<sub>2</sub> and increasing the absorbance in visible region. The parameters including effects of dopant concentration, photocatalyst dosage, initial dye concentration and initial pH on the process performance were investigated. Furthermore chemical oxygen demand (COD) confirmed the degradation of the dyes. The degradation processes in both dyes followed a pseudo-first-order kinetics.

## **Contents**

| Acknowledgements                                                 | I    |
|------------------------------------------------------------------|------|
| Abstract                                                         | II   |
| List of Figures                                                  | V    |
| List of Tables                                                   | VIII |
| Abbreviations and symbols                                        | IX   |
| 1. Introduction                                                  | 1    |
| 1.1. Photocatalysis                                              | 1    |
| 1.1.1. Nano-sized photocatalysts                                 | 2    |
| 1.1.2. Photocatalytic process                                    | 2    |
| 1.1.3. Semiconductors as photocatalysts                          | 3    |
| i. Titania photocatalyst                                         | 5    |
| ii. Photocatalytic activity of TiO <sub>2</sub>                  | 6    |
| iii. Mechanism of photocatalysis for titania                     | 7    |
| 1.2. The objectives                                              | 11   |
| 1.3. Literature survey                                           | 12   |
| 1.3.1. Different methods of preparation                          | 12   |
| i. Sol-gel                                                       | 12   |
| ii. Hydrothermal                                                 | 14   |
| iii. Vapour deposition                                           | 16   |
| iv. Sonochemical method                                          | 16   |
| v. Microwave method                                              | 17   |
| vi. Direct oxidation method                                      | 17   |
| vii. Electrodeposition                                           | 18   |
| 1.4. Modification of TiO <sub>2</sub>                            | 19   |
| 1.4.1. Coupled with other semiconductors or sensitized with dyes | 20   |
| 1.4.2. Nonmetals doped titania                                   | 21   |
| 1.4.3. Metals doped titania                                      | 22   |

| 1.4.4. Noble metals doped TiO <sub>2</sub>                                     | 3 |
|--------------------------------------------------------------------------------|---|
| (Platinum doped TiO <sub>2</sub> )                                             | 4 |
| 1.5. Photocatalytic degradation of dyes                                        | 6 |
| 2. Materials and Experimental                                                  | 4 |
| 2.1. Chemicals                                                                 | 4 |
| 2.2. Photocatalyst Preparation                                                 | 5 |
| 2.2.1. TiO <sub>2</sub> photocatalyst by sol-gel method                        |   |
| 2.2.2. Pt/TiO <sub>2</sub> photocatalyst by incipient wetness method           | 5 |
| 2.3. Characterization and analysis                                             | 6 |
| 2.3.1. X-ray diffraction (XRD)                                                 | 6 |
| 2.3.2. UV-visible diffuse reflectance spectroscopy                             | 7 |
| 2.3.3. Field emission scanning electron microscopy (FESEM)                     | 7 |
| 2.3.4. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) | 8 |
| 2.3.5. High resolution transmission electron microscopy (HRTEM) 38             | 8 |
| 2.3.6. Surface area measurement                                                | 8 |
| 2.3.7. Fourier-transform infrared (FT-IR) spectra                              | 9 |
| 2.3.8. Photoluminescence (PL)                                                  | 9 |
| 2.3.9. Terephthalic acid photoluminescence probing technique (TA-PL) 39        | 9 |
| 2.3.10. Determination of COD                                                   | 0 |
| 3. Results and Discussion                                                      | 3 |
| 3.1. Characterization of the photocatalysts                                    | 3 |
| i. X-ray diffraction analysis (XRD)                                            |   |
| ii. Band gap energy                                                            | 5 |
| iii. (FESEM)                                                                   | 8 |
| iv. (SEM-EDX) analysis                                                         | 0 |
| v. (HRTEM)53                                                                   | 3 |
| vi. Textural properties57                                                      |   |
| vii. Photoluminescence (PL)                                                    | 9 |
| viii. Determination of hydroxyl radicals                                       | 0 |

#### Contents

|                                                 | 0 0 1110 1110 |
|-------------------------------------------------|---------------|
| ix. Determination of functional groups          | 62            |
| 3.2. Photocatalytic degradation of dyes         | 64            |
| 3.2.1. Photocatalytic activity of Rhodamine B   | 64            |
| i. Effect of dopant concentration.              | 64            |
| ii. Effect of photocatalyst dosage              | 68            |
| iii. Effect of initial dye concentration        | 71            |
| iv. Effect of initial pH                        | 74            |
| v. Effect of light source                       | 78            |
| vi. Chemical oxygen demand (COD) study          | 84            |
| vii. Reusability                                | 85            |
| 3.2.2. Photocatalytic activity of Methyl orange | 87            |
| i. Effect of dopant concentration.              | 87            |
| ii. Effect of photocatalyst dosage              | 89            |
| iii. Effect of initial dye concentration        | 92            |
| iv. Effect of initial pH                        | 95            |
| v. Effect of light source                       | 99            |
| vi. Chemical oxygen demand (COD) study          | 104           |
| vii. Reusability                                | 105           |
| Summary and Conclusion                          | 106           |
| References                                      | 111           |
| Appendix                                        | 129           |
| Arabic summary                                  | 130           |

## **List of Figures**

| Fig. |                                                                    | Page |
|------|--------------------------------------------------------------------|------|
| 1.1  | Band structure of (A) metals, (B) insulators and                   |      |
|      | (C) semiconductors                                                 | 3    |
| 1.2  | Schematic representation of various                                |      |
|      | semiconductors with their band gap                                 | 4    |
| 1.3  | Schematic illustration for energetics and primary                  |      |
|      | reaction mechanism of TiO2 photocatalysis                          | 10   |
| 1.4  | Structure of Rhodamine B dye                                       | 28   |
| 1.5  | Species formed on protonation of Methyl                            |      |
|      | orange                                                             | 29   |
| 3.1  | XRD patterns of TiO <sub>2</sub> containing various platinum       |      |
|      | contents                                                           | 45   |
| 3.2  | (A) Kubelka-Munk function and (B) Tauc plot of                     |      |
|      | TiO <sub>2</sub> containing various platinum contents              | 47   |
| 3.3  | FESEM images of (A) TiO <sub>2</sub> and (B) TPt0.25               | 49   |
| 3.4  | SEM-EDX spectra of (A) TPt0.1, (B) TPt0.15, (C)                    |      |
|      | TPt0.25 and (D) TPt0.3                                             | 51   |
| 3.5  | (A)- (E) HRTEM of TiO <sub>2</sub> , TPt0.1, TPt0.15,              |      |
|      | TPt0.25, and TPt0.3. (F)-(I) SAED TiO <sub>2</sub> , TPt0.1,       |      |
|      | TPt0.15, and TPt0.3                                                | 54   |
| 3.6  | N <sub>2</sub> -adsorption-desorption isotherm                     | 58   |
| 3.7  | The photoluminescence spectra of the TiO <sub>2</sub> and          |      |
|      | TPt0.25                                                            | 59   |
| 3.8  | •OH trapping photoluminescence spectral changes                    |      |
|      | observed during irradiation of (A) TiO <sub>2</sub> ; (B)          |      |
|      | TPt0.25 in a $5 \times 10^{-4}$ mol/l terephthalic acid solution   |      |
|      | (excitation at 315 nm)                                             | 61   |
| 3.9  | FTIR spectra of the TiO <sub>2</sub> and Pt doped TiO <sub>2</sub> | 63   |
| 3.10 | (A) Photodegradation of RhB over TiO <sub>2</sub> , TPt0.1,        |      |
|      | TPt0.15, TPt0.25 and TPt0.3 (B) Kinetics plot as a                 |      |
|      | function as platinum percentage                                    | 67   |
| 3.11 | (A) Effect of photocatalyst dosage on                              |      |
|      | photocatalytic degradation of RhB over TiO <sub>2</sub> . (B)      |      |
|      | Kinetics plot of RhB as a function of photocatalyst                |      |
|      | dosage                                                             | 69   |