

IMPROVING THE CONNECTIVITY OF HYBRID BACKHAULING FOR 5G NETWORKS

By

Mohammed Hamood Mohammed Almekhlafi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

IMPROVING THE CONNECTIVITY OF HYBRID BACKHAULING FOR 5G NETWORKS

By

Mohammed Hamood Mohammed Almekhlafi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Mohamed M. Khairy

Dr. Yasmine A. Fahmy

Electronics and Communications Engineering Faculty of Engineering, Cairo University

Electronics and Communications Engineering Faculty of Engineering, Cairo University

Dr. Hany M. Elsayed

Electronics and Communications Engineering Faculty of Engineering, Cairo University

IMPROVING THE CONNECTIVITY OF HYBRID BACKHAULING FOR 5G NETWORKS

By **Mohammed Hamood Mohammed Almekhlafi**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Mohamed Mohamed Khairy, Thesis Main Advisor

Dr. Yasmine Ali Fahmy, Advisor

Prof. Dr. Magdy Saeed EL-Soudani, Internal Examiner

Prof. Dr. Ibrahim Ismail Ibrahim, External Examiner

Faculty of Engineering, Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer's Name: Mohammed Hamood Mohammed Almekhlafi

Date of Birth: 8/9/1987 **Nationality:** Yemeni

E-mail: mhdalmekhlafi@gmail.com

Phone: 00201098520940

Address: 112321 Registration Date: 1/3/2014 Awarding Date: ../../2018

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Mohamed Mohamed Khairy

Dr. Yasmine Ali Fahmy Dr. Hany Mohamed Elsayed

Examiners:

Porf. Mohamed Mohamed Khairy
Dr. Yasmine Ali Fahmy
(Advisor)
Prof. Magdy Saeed El-Soudani
Prof. Ibrahim Ismail Ibrahim
(External examiner)

Professor of Electronics and Communications Engineering, Faculty of

Engineering, Helwan University

Title of Thesis:

Improving the Connectivity of Hybrid Backhauling for 5G Networks

Key Words:

Backhauling; Algebraic connectivity; Optical fiber; Free space optics; Radio frequency.

Summary:

This thesis aims to improve the network connectivity by adding a limited number of OF links along with the wireless connections of RF, FSO or hybrid RF/FSO backhaul links between the small cells while taking into consideration the minimum data rate, the cost, and reliability of different links. In contribution I, we aim to maximize the algebraic connectivity by inserting a limited number of links of backhauling technologies, while minimum rate per link (R) constraint must be satisfied. While in contribution II, we aim to maximize both the algebraic connectivity and nodes throughput by inserting a limited number of links of backhauling technologies.

Acknowledgements

First and foremost I would like to thanks Almighty Allah for countless reasons. I would like to express my sincere gratitude to my advisors Prof. Mohamed Mohamed Khairy, Dr. Hany Elsayed and Dr. Yasmine Fahmy for their continuous support of my thesis study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I would also like to thanks the faculty members for their efforts in making the institution a well-establish environment for learning.

A very special gratitude is reserved for my family, my beloved parents, brothers and wife. I admit that any success in my life would not has been achieved without their love, care, continuous encouragement, and support.

Table of Contents

A	cknov	vledgen	nents	i
Table of Contents List of Tables v				
Li	st of	Abbrev	ations	i
Li	st of S	Symbol	S	X
\mathbf{A}	bstrac	et	xi	i
1	INT	RODU	CTION	1
	1.1	Introd	action	1
	1.2	Organ	zation of the thesis	2
2	BAC	CKGRO	OUND AND RELATED STUDIES	3
	2.1	Backh	auling Technologies	4
		2.1.1	Copper	5
		2.1.2	Radio Frequency	6
			2.1.2.1 RF system model	5
		2.1.3	Optical Fiber	7
		2.1.4	Optical Wireless Communication	8
			2.1.4.1 Free space optics	9
			2.1.4.2 FSO channel model	С
		2.1.5	RF/FSO Links System Model	4
		2.1.6	Backhaul Technology Comparison	4
	2.2	Relate	d Studies	5
	2.3	Optim	ization	5
		2.3.1	Linear Programing	7
		2.3.2	Semidefinite Programming	7
		2.3.3	Integer Programming	9

		2.3.4	Multi-ob	jective Programming	20
			2.3.4.1	Global criterion method	22
			2.3.4.2	Linear combination of objective weights	23
			2.3.4.3	The ε – $constraint$ method	23
			2.3.4.4	Genetic algorithm	24
		2.3.5	Optimiza	ation Models and Solvers	25
			2.3.5.1	CVX	25
	2.4	Graph	Theory .		26
			2.4.0.1	Laplacian Properties	27
		2.4.1	Connect	ivity Measures	28
			2.4.1.1	Classical measures of graph	29
			2.4.1.2	Spectral measures of graph	29
			2.4.1.3	Connectivity measures comparison	30
	2.5	Summ	ary		30
3	MA: NES		ING ALG	EBRAIC CONNECTIVITY WITH LINK RATE AWAR	RE- 31
	3.1	Systen	n Model		31
	3.2	Single	-Tier Netw	ork	33
		3.2.1	Single Ti	er Problem Formulation	33
			3.2.1.1	Single-tier convex relaxation	34
			3.2.1.2	Moderate upper bound	35
	3.3	Multi-	Tier Netwo	ork	35
		3.3.1	Multi-Tie	er System Problem Formulation	36
			3.3.1.1	Multi-tier convex relaxation	37
	3.4	Propos	sed Algorit	thm	38
	3.5	Summ	ary		40
4	MA	XIMIZ	ING ALG	EBRAIC CONNECTIVITY WITH NODE THROUGH	. -
	PUT	AWAF	RENESS		41
	4.1	Systen	n Model .		41
		4.1.1	Problem	formulation	42
			4.1.1.1	Multi objective formulation	42
			4.1.1.2	Optimal nodes throughput using MILP	44
			4.1.1.3	Moderate upper bound	45

	4.2	Proposed Algorithm	45
	4.3	Summary	47
5	SIM	ULATION RESULTS	48
	5.1	Maximizing Algebraic Connectivity with Link Rate Awareness Simulation	
		Results	48
		5.1.1 Single-Tier Results	49
		5.1.2 Multi-Tier Simulation Results	52
	5.2	Maximizing Algebraic Connectivity with Node Throughput Awareness	
		Simulation Results	54
	5.3	Summary	61
6	DIS	CUSSION AND CONCLUSIONS	62
	6.1	Future Work	62
Re	feren	ces	64
Αŗ	pend	ix A Convex relaxation	68
	A.1	Linear Convex Relaxation	69
	A.2	Algebraic Connectivity Bounds	71
Ar	pend	ix B FSO and RF Rate and reliability	73

List of Tables

2.1	Path Loss exponent	7
2.2	Backhauling technologies comparison	15
2.3	CVX supported solvers and programming	26
2.4	Connectivity measures	30
3.1	Edge categories	1 (

List of Figures

2.1	Data rate demand in cellular network technologies	3
2.2	5G networks services	4
2.3	Backhauling technologies and architecture for 5G networks	5
2.4	Free space optics transceiver	11
2.5	Reliability against index of refraction with different transmittance	13
2.6	Reliability against transmission distance with different transmittance	13
2.7	Pareto frontier	21
2.8	arepsilon-constraint method	24
2.9	Graph sample with cut vertex	27
3.1	A hybrid backhaul network	31
3.2	Single tier network	33
3.3	Multi-Tier network	36
3.4	Proposed hybrid Optical/RF algorithm	39
4.1	Multi- objective proposed algorithm	46
5.1	Connectivity when the inserted links are only OF links	48
5.2	Single tier: Connectivity when the added links are 20%OF, 40% FSO and 40% RF and R=3 (nats)	49
5.3	Single tier: Connectivity when the added links are 20% OF, 40% FSO and 40% RF and R=7 (nats)	50
5.4	Single tier: Connectivity against the number of inserted links with different min rate R	51
5.5	Connectivity against both the minimum rate R and the number of inserted links	51
5.6	Multi-tier: Connectivity against the number of inserted links with different min rate $R_1 = 2$, $R_2 = 5$ (nats)	53
5.7	Multi-tier: Connectivity against the number of inserted links with different min rate $R_1 = 5$ and $R_2 = 7$ (nats)	53
5.8	Multi-tier: Connectivity against the number of inserted links with different min rate R_1 and R_2	54
5.9	Feasible set and Pareto front for different cases	55

5.10	Connectivity and minimum node throughput against the inserted links for small network with 9 nodes ($\zeta = 0.5$)	57
5.11	Connectivity and Minimum node throughput for Network with 9 nodes for different ζ	58
5.12	Connectivity and Minimum node throughput for Network with $21\ nodes$.	59
5.13	Algebraic connectivity against minimum nodes throughput (n=9)	60
5.14	Algebraic connectivity against minimum nodes throughput (n=21)	60
B.1	FSO and RF effective rates against distance	73
B.2	FSO and RF rate and reliability against distance	73

List of Abbreviations

5G 5th generation of cellular networks

ATM Asynchronous Transfer Mode

BSC Base Station Controller

BTS Base Transceiver Station,

CAPEX Capital Expenditure

CRN Cognitive Radio Network

CVX Matlab Software for Disciplined Convex Programming

D2D Device to Device

DC-DC Direct D2D communication with device controlled link establishment

DC-OC Direct D2D communication with operator controlled link establishment

DR-OC Device relaying with operator controlled link establishment

EDGE Enhanced Data rates for GSM Evolution

FSO Free Space Optics

GE Gigabit Ethernet

GHZ Giga Hertz

GSM Global System for Mobile

H-CRAN Heterogeneous Cloud Radio Access Network

HDTV High Definition Television

HetNets Heterogeneous Networks

IM/DD Intensity Modulation / Direct Detection

IoT Internet of Things

IR Infrared

LED Light Emitting Diode

LOS line-of sight

LP Linear Programming

LPD Low probability of Detection

LPI Low probability of intercept

MBS Macrocell Base-Station

MIP Mixed Integer Programming

MOP Multi-Objective Problems

MPLS Multi-protocol Label Switching

Non-LOS Non line-of sight

OF Optial Fiber

OOK On-Off Keying

OPEX Operation Expense

OWC Optical Wireless Communication

PCM Pulse Code Modulation

PMP Point-To-Multi-Point

PTP Point-To-Point

SOCP Second-Order Cone Program

QP Quadratic Programming

RF Radio Frequency

RNC Radio Network Controller

SBS Small Base Station

SDH Synchronous Digital Hierarchy

SDP Semidefinite programing

SNR Signal-to Noise Ratio

SONET Synchronous Optical Networking

STM Synchronous Transport Module-

TDM Time Division Multiplexing

UV Viable Ultraviolet

UMTS Universal Mobile Telecom. System

Wi-Fi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WMN Wireless Mesh Network

WSN Wireless Sensor Network

List of symbols

	•
a_l	Edge vector
\boldsymbol{A}	Incidence matrix
\hat{A}	Adjacency matrix
В	Channel bandwidth
C^F	Free space optics link capacity
C_n^2	The index of refraction structure parameter
C^{O}	Optical fiber link capacity
C^{Ω}	Radio frequency link capacity
D	Degree diagonal matrix
\boldsymbol{E}	Set of edges
E_{base}	Set of pre-deployed edges in network graph
f^0	Ideal vector
\boldsymbol{G}	Network Graph
I_0	Average intensity Received without turbulence
$oldsymbol{I}_{th}$	Threshold of the received intensity
K^{O}	Number of inserted optical fiber links
K^{Ω}	Number of inserted radio frequency links
K^F	Number of inserted free space optics links
K^T	Number of total inserted links
\boldsymbol{L}	Laplacian matrix
L_{base}	Laplacian matrix of the base network graph
L^{O}	Laplacian matrix of OF links in graph
L^F	Laplacian matrix of FSO links in graph
L_p	Linear programming metric
L^{Ω}	Laplacian matrix of RF links in graph
m_c	Set of cardiants edges
n	Number of small-cells in the network
P *	Pareto optimal Set

PF* Pareto front

 R^F Free space optics link rate

 R^{O} Optical fiber link rate

 R^{Ω} Radio frequency link rate

 R_1 Lower tier rate threshold

R₂ Upper tier rate threshold

 R_i Node j throughput

W Weight matrix

 w^F Free space optics link weight

w⁰ Optical fiber link weight

 w^{Ω} Radio frequency link weight

z Transmission distance

 α Path loss exponent

 β Altitude

 γ FSO peak to noise ratio

 $ar{\gamma}$ FSO average signal to noise ratio

 λ Optical wave wavelength

 λ_2 Second eigenvalue of the Laplacian matrix

 ω Pareto optimal solution set

 σ_X^2 Log-amplitude fluctuation variance

 $2\pi/\lambda$ Optical number