Vitamin D Deficiency: Correlation to Interleukin-17 in Chronic Hepatitis C Virus Egyptian Patients

Thesis

Submitted for Partial Fulfillment of Master Degree In Clinical and Chemical Pathology

By

Alyaa Saied Mahmoud Soedan

M.B.B.,Ch Faculty of Medicine Ain Shams University

Supervised by

Professor/Hanaa Ahmed Ali Amer

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Professor/ Yasser Ahmed Zeitoun

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Doctor/ Rania Ahmed Abo- Shady

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Faculty of Medicine Ain shams University 2017

سورة البقرة الآية: ٣٢

First and foremost, praise and thanks must be to ALLAH, Who guides me throughout life.

I would like to express my deepest gratitude and thanks to **Professor/Hanaa Ahmed Ali Amer**, Professor of Clinical and Chemical Pathology, Faculty of Medicine-Ain Shams University, for her kind continuous encouragement and great support throughout the work. It was a great honor to be a student working under her supervision.

I am also greatly indebted and grateful to **Professor/Yasser Ahmed Zeitoun,** Professor of Clinical and Chemical Pathology,
Faculty of Medicine-Ain Shams University, for his great help,
valuable time, careful supervision and continuous advices and his
efforts that made this work come to light.

I am also greatly indebted to **Doctor/ Rania Ahmed Abo- Shady,** Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine-Ain Shams University, it was impossible for me to finish this work without her wise instructions and guidance. No words would ever fulfill my deepest gratitude towards her support.

Last but not least, I can't forget to thank all members of my **Family**, specially my **Parents** and my **Husband** for pushing me forward in every step in my life.

Candidate

Alyaa Saied Mahmoud Soedan

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Hepatitis C Virus	5
Vitamin D	25
Interleukin 17	49
Subjects and Methods	63
Results	73
Discussion	81
Summary	89
Recommendations	93
References	94
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ADCC : Antibody-dependent cell-mediated cytotoxicity

ALT : Alanine aminotransferase

AP-1 : Activator protein 1

APC : Antigen-presenting cell

C/EBP : CCAAT-enhancer binding protein

C-BAD : C/EBPβ activation domain

CCL20 : C-C Motif Chemokine Ligand 20

CCR6 : Chemokine receptor 6

CIA : Chemiluminescence Immunoassay

CLDN1 : Claudin-1

CTLA 8 : Cytotoxic T-lymphocyte antigen-8

CVD : Cardiovascular diseases

CXCL : Chemokine (C-X-C motif) ligand

CYP24A1 : Catabolic enzyme 24-hydroxylase

DBP: Vitamin D-binding protein

DC-SIGN: Dendritic cell-specific intercellular adhesion

molecule-3-grabbing non-integrin

DOPPS: Dialysis Outcomes and Practice Patterns Study

EAE : Experimental autoimmune encephalomyelitis

EIA : Enzyme-linked immunosorbent assay

ERKs : Extracellular signal–regulated kinases

FGF23 : Fibroblast growth factor 23

FN1 : Fibronectin

FOXP3 : Forkhead box P3

G-CSF : Granulocyte - Colony Stimulating Factor

GRO : Chemokines growth-regulated oncogene

HBD2 : Human β-defensin 2

HCC: Hepatocellular carcinoma

HCV E2 : Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

HLA : Human leukocyte antigen

HSC : Hepatic stellate cells

IFNγ : Interferon gamma

IL : Interleukin

JNKs : c-Jun N-terminal kinases

MAPK : Mitogen-activator protein kinase

MCP-1 : Monocyte chemoattractant protein-1

MIP-3 : Macrophage inflammatory protein 3

ML-1 : Mistletoe lectin-1

MPGN: Membranoproliferative glomerulonephritis

NASH : Non-alcoholic steatohepatitis

NF- κB : Nuclear Factor κ B

NK : Natural killer

P38 : Mitogen-activated protein kinases

PAMPs: Pathogen-associated molecular patterns (PAMPs)

PBC: Primary biliary cirrhosis

PCR : Polymerase chain reaction

RIBA : Recombinant immunoblot assay

ROR : Related orphan receptor

RPM: rotation per minute

SA-HRP : Streptavidin-horseradish peroxidase

SD : Standard deviation

SEF : Similar expression to FGF receptor

SOCS3 : Suppressor of cytokine signaling 3

SRB1 : Scavenger receptor class B-1

STAT3 : Signal transducer and activator of transcription 3

TGF-β : Transforming growth factor beta

Th1: Thelper

TILL : TIR-like loop

TLR : Toll like receptor

TMB : Tetramethylbenzidine

TNF: Tumor necrosis factor

TRAF : TNF receptor associated factor

Treg : Regulatory T cells

UTR : Untranslated regions

VDR : Vitamin D Receptor

1,25(OH)2D3: 1,25-dihydroxyvitamin D3

List of Tables

Eable N	o. Citle	Page No.
Table (1):	Vit D forms	29
Table (2):	Descriptive data among Group I (HCV patients)	
Table (3):	Vitamin D and Interleukin 17 among II (Control Group)	-
Table (4):	Statistical comparison between females within Group I (chronic patients) regarding different parameters	HCV
Table (5):	Statistical comparison between with low viremia and high viremia Group I (chronic HCV patients)re their age, vitamin D and IL17	within garding
Table (6):	Statistical comparison between C (chronic HCV patients) and Gr (Control Group) regarding serum vit and IL17	roup II tamin D
Table (7):	Statistical comparison between C (chronic HCV patients with low (less than 800.000 IU/ml) and G (Control Group) regarding serum vit and IL17	viremia roup II tamin D
Table (8):	Statistical comparison between C (chronic HCV patients with high (more than 800.000 IU/ml) and G (Control Group) regarding serum vit and IL17	viremia Froup II tamin D

Table (9):	Correlations between IL-17and vitamin D among Group I regarding different parameters	7
Table (10):	Correlations between vitamin D and interleukin 17 among both groups	8
Table (11):	ROC Curve to discriminate cases using IL-17 level	9
Table (12):	ROC Curve to discriminate cases using Vit.D level	0

List of Figures

Figure No	. Citle Page V	lo.
Figure (1):	Summary of immunopathological mechanisms putatively involved in the pathogenesis of HCV-associated cirrhosis	. 13
Figure (2):	HCV testing Sequence	.24
Figure (3):	HCV interpretation and further action Sequence	.24
Figure (4):	"Backbone" of a secosteroid versus that of a traditional steroid	.25
Figure (5):	Vit D synthesis and metabolism	.26
Figure (6):	Vit D role in the body	.28
Figure (7):	Vit D receptor distribution	.37
Figure (8):	Downregulation by 1,25-(OH)2 Vit D of pro-inflammatory dendritic cell and T-cell function and macrophage activity and migration	.41
Figure (9):	The IL-17 cytokine family has six members	.50
Figure (10):	IL-17 receptor family	.53
Figure (11):	IL-17 receptors signal transduction	.54
	ROC curve analysis showing the diagnostic performance of IL 17 and Vit. D	

Abstract

Background: HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Aim of the Work: to assess vitamin D level and intrleukin-17 level in chronic hepatitis C patients and to determine whether there is a correlation between the two. Subjects and Methods: The present study was conducted in Clinical Pathology Department, Ain Shams University Hospitals. It included 50 adult individuals divided in to two groups. First group: Thirty Egyptian chronic hepatitis C virus (HCV)-infected patients (HCV RNA positive > 6months). Second group: Twenty healthy volunteers who are age and sex-matched. Results: The current study showed that there was no correlation between vitamin D and IL-17 among both groups. **Conclusion:** It has been observed that chronic HCV patients have high level of IL-17 and low level of vitamin D. We could assume that vitamin D deficiency can be one of the causes of elevation of the IL-17 resulting in more inflammatory consequences in the liver. **Recommendations:** Further investigations are recommended to clarify the rule of IL-17 in the pathogenesis of chronic hepatitis C disease.

Key words: HCV, Interleukin-17, immune control, vitamin D.

Introduction

n estimated 2%–3% of the world's population is living with hepatitis C virus (HCV) infection, and each year, >350.000 die of HCV-related conditions, including cirrhosis and liver cancer. The epidemiology and burden of HCV infection varies throughout the world, with country-specific prevalence ranging from <1% to >10%. In contrast to the United States and other developed countries, HCV transmission in developing countries frequently results from exposure to infected blood in healthcare and community settings. Hepatitis C prevention, care, and treatment programs must recognize country-specific epidemiology, which varies by setting and level of economic development (*Averhoff et al.*, 2012).

HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell

regulation by modulating T helper and Treg response and by impairing the balance between positive and negative costimulatory molecules and between pro- and anti-apoptotic proteins (*Larrubia et al.*, 2014).

Human IL-17 (IL-17) - producing CD4 Tcells, Th 17, comprise a proinflammatory T-cell subset. Previous studies have identified Th 17 as a known arm of the CD4+ T-cell effector response. It has been demonstrated that several key cytokines, including IL-1, IL-6, tumor necrosis factor alpha, and IL-23 create a cytokine milieu that regulates the differentiation and expansion of human TH17 cell (*Zhang et al.*, 2005).

IL-17A can mobilize, recruit, and activate neutrophils, leading to massive tissue inflammation, and promote the progression of autoimmune disease. Furthermore, serumIL-17 levels are increased and serve as a marker of the severity of acute hepatic injury (*Yasumi et al.*, 2007).

Vitamin D is a fat-soluble vitamin which is essential for maintenance of bone mineralization through the regulation of calcium and phosphorus homeostasis. Vitamin D also exhibits many non-skeletal effects, particularly on the immune, endocrine, and cardiovascular systems. Acting through the VDR, 1,25-dihydroxyvitamin D is a potent immune system modulator. The VDR is expressed by most cells of the immune system, including regulatory T cells and antigen-presenting

cells, such as dendritic cells and macrophages. Under specific circumstances, monocytes, macrophages, and T cells can express the 25-hydroxyvitamin D3-1α-hydroxylase enzyme and produce 1,25-dihydroxyvitamin D, which acts locally to regulate the immune response. There is considerable scientific evidence that 1,25-dihydroxyvitamin D has a variety of effects on immune system function, which may enhance innate immunity and inhibit the development of autoimmunity. Conversely, vitamin D deficiency may compromise the integrity of the immune system and lead to inappropriate immune responses (*Smolders et al.*, 2011).

Vitamin D undergoes hepatic 25-hydroxylation, rendering the liver critical to the metabolic activation of this vitamin. Vitamin D deficiency is highly prevalent in CLD patients, and vitamin D levels are inversely related to the severity of CLD. Declining levels of carrier proteins such as albumin and vitamin D-binding protein might also be critical in CLD (*Stokes et al.*, *2013*).

The active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], has a direct repressive effect on the expression of IL-17A in T cells. The mechanism of 1,25(OH)₂D₃ repression of IL-17A expression was found to be transcriptional repression, mediated by the vitamin D receptor (VDR) (*Joshi et al.*, *2011*).

Aim of the Work

To assess vitamin D level and intrleukin-17 level in chronic hepatitis C patients and to determine whether there is a correlation between the two.