The Role of Fetal MRI in Diagnosis of Intrauterine Neurological Congenital anomalies

Essay

şSubmitted for the partial fulfillment of Master Degree

in Radiodiagnosise

By
Susan Ramadan Elshershaby
M.B., B., Ch,

Supervised by

Dr. Sameh Mohamed Abd Elwahab

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Ahmed Fathy AbdElghany

Lecturer of Radiodiagnosis Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Contents

Introduction and aim of work.
Anatomy (brain and spinal cord)
Congenital anomalies of brain and spine
Technique of MRI
Application Of high field MRI in fetal imaging 30
Normal appearance of fetal MRI
Manifestations 59
Summary and Conclusion
References103
Arabic summary

List of Abbreviations

MRI Magnetic resonance imaging

US Ultrasoud

CNS Central nervous system
CSF Cerebro-spinal fluid

Li, Lv. First and fifth lumbar vertebræ

Sii Second sacral vertebra

GA gestational age

RARE Rapid acquisation and relaxtion enhancement
HASTE half-Fourier acquired single-shot turbo spin-echo

SS-FSE single-shot, fast spin-echo

TR repetition time
TE echo time

V M Ventriculomegally NTDs Neural tube defects

Acc Agenesis of corpus callosum

MCDs malformations of cortical development

HARD±E hydrocephalus, agyria, and retinal dysplasia with or

without encephalocele

PVH Periventricular heterotopias SCH Subcortical heterotopias

PMG Polymicrogyra

CMI Chiari I malformation SCM Split cord malformation

T Tesla

FMPSPG Fast multiplanar spoiled gradient-recalled

acquisition in the steady state

CT Computed tomography

M months

List of Table

Table	Subject	Page
1	Congenital central nervous system anomalies	19
2	Fetal MR Imaging Techniques	29

List of Figures

Fig.	Title	Page
1	The embryo's brain at four weeks	4
2	The embryo's brain at six weeks	5
3	Cross-section of a developing spinal cord	6
4	Coronal section of brain through intermm ediate ass of third ventricle	7
5	Principal fissures and lobes of the cerebrum	8
6	Scheme showing relations of the ventricles to the surface of the brain	9
7	Scheme of roof of fourth ventricle	10
8	Medulla oblongata and pons. Anterior surface	11
9	Sagittal section of the cerebellum, near the junction of the vermis with the hemisphere	12
10	Schematic representation of the circle of Willis, arteries of the brain and brain stem	14
11	Sagittal section of the skull, showing the sinuses of the dura	16
12	Sagittal section of vertebral canal	17
13	Development of the parieto-occipital fissure (Axial)	32
14	Development of the parieto-occipital fissure (sagital)	33
15	Development of Calcarine fissure	33
16	Development of cingulate sulcus (coronal)	34
17	Development of cingulate sulcus (Sagittal)	35
18	Development of central sulcus	35
19	the precentral, central, and postcentral sulci (normal appearance)	36
20	the development of sulci on the lateral hemispheric surface	36
21	the temporal sulci	37
22	Normal development of the sylvian fissureat 18 weeks.	38

Fig.	Title	Page
23	Normal development of the sylvian fissure at 20 weeks.	38
24	Normal development of the sylvian fissure at 27 weeks	39
25	the normal appearance of the corpus callosum in a 26-gestational-week-old fetus (.Midline sagittal image)	40
26	the normal appearance of the corpus callosum in a 26-gestational-week-old fetus (sagittal Slightly oblique)	40
27	The corpus callosumin 35 weeks fetus, Coronal view	41
28	Brainstem myelination in normal fetus at 22 weeks	42
29	Three layers of the cerebrum in a 20-week-old fetus	43
30	Coronal image in 23weeksfetus demonstrates a multilayered patternof the cortex	43
31	normal fetal hydrocephalus in12 weeks fetus (Sagittal image)	44
32	normal fetal hydrocephalus in12 weeks fetus (coronal image)	45
33	primitive fetal ventricular configuration	45
34	lateral ventricles in 30weeks fetus	46
35	normal ventricular configuration in a normal fetus at 32 weeks	46
36	Basal ganglia and thalami normal appearance	47
37	subarachnoid space, normal appearance	48
38	inferior vermis in fetus of 18 weeks	49

Fig.	Title	Page
39	24-week gestational age fetus shows the corpus callosum and brain stem	50
40	normal cerebellar hemispheres, normal cisterna magna, normal fourth ventricle. in fetus at 25 weeks.	50
41	Sagittal image of a fetal brain at 37 weeks gestation. Showing the pons and cerebellum	51
42	Axial image in fetus at 21 weeks' gestation shows early folial pattern	52
43	A fetus at 32 weeks' gestation. image shows well-developed cerebellar hemisphere	52
44	Coronal image in fetus at 21 weeks' gestation shows three cerebellar layers	53
45	Axial of brain of fetus at 25 weeks' gestation clearly shows middle cerebellar peduncles	53
46	T2-weighted sagittal midline image of a normal third-trimester fetal brain	54
47	(A through D) Sequential axial views from the lower brainstem to the midbrain in a third-trimester fetus	56
48	Sagittal image of a fetus shows the entire spinal column	57
49	ventriculomegaly with kinked brain stem and polymicrogyra.	59
50	mild enlargement of lateral ventricles and focal hyperintensity.	60
51	A & b Severe ventriculomegaly in a fetus at 30 weeks gestation.	61
52	a ,b:Fetus with ventriculomegaly, absent corpus callosum, Dandy-Walker malformation, and hemorrhage at 25 weeks of gestational age.	62

Fig.	Title	Page
53	Transverse MR image shows colpocephaly in fetus at 34 weeks.	63
54	colpocephaly in fetus at 33 weeks of gestational age	63
55	angular configuration of the lateral ventricle.	64
56	fused frontal horns of the lateral ventricle.	64
57	Sagittal image in a 25week-old fetus, agenesis of the corpus callosum as well as a small pons.	65
58	A,Axial, Bcoronal, CAxail. shows additional apnormality with calosal agensis	66
59	absence of corpus callosum and abnormal morphology of medial brain surface	66
60	ACC with an absent cingulate gyrus.	67
61	hypogenesis of the corpus callosum (22 weeks' gestation).	67
62	Agenesis of the corpus callosum in a fetus at 34 weeks gestation.	68
63	ventriculomegaly and agenesis of corpus callosum	68
64	Lissencephaly	70
65	Lissencephaly associated with Miller-Dieker syndrome coronal image	70
66	Lissencephaly associated with Miller-Dieker syndrome. Axial image	71
67	Classical lissencephaly	71
68	Walker-Warburg syndrome in a 27-week-old fetus. Axial MR image	72
69	Walker-Warburg syndrome in a 27-week-old fetus. Coronal MR image	72
70	Walker-Warburg syndrome in a 27-week-old fetus. Sagittal MR image	73

Fig.	Title	Page
71	Walker-Warburg syndrome.	72
71	Parasagittal MR image	73
72	Walker-Warburg syndrome Sagittal image	74
73	Walker-Warburg syndrome. Axial image	74
74	subependymal heterotopia. Axial weighted image	75
75	subependymal heterotopia, Coronal image	76
76	polymicrogyria. Axial image	77
77	perisylvian polymicrogyria Coronal and Axial images	77
78	bilateral open lip schizencephaly Coronal image	78
79	bilateral open lip schizencephaly.Axial image .	79
80	Holoprosencephaly	80
81	hydranencephaly	81
82	encephalocele	81
83	congenital cytomegalovirus infection.	82
84	Coronal image of a 26-week-old fetus with tuberous sclerosis.	83
85	Coronal MR image in a fetus with tuberous sclerosis at 33 weeks of gestational age	83
86	Sagittal MR images at 32 weeks' gestational ageof fetus with tuberous sclerosis	84
87	T2-weighted axial shows diffuse bilateral frontal hyperintensity	85
88	24-week twin gestation complicated by twintwin transfusion.	85
89	a23-gestational-week-old fetus in a monochorionic twin pregnancy complicated by co-twin demise	86
90	Dandy-Walker malformation in a fetus at 34 weeks gestation. (a) Axial and (b) sagittal.	87
91	Dandy-Walker variant in 18-week fetus. Transverse MR image	87
92	22-gestational-week-old fetus. Sagittal image	88

Fig.	Title	Page
	shows Dandy-Walker variant	
93	Sagittal magnetic resonance image demonstrating an enlarged cisterna magna	88
94	Sagittal image in a 33-gestational-week-old fetus demonstrates a large cisterna magna	89
95	203-day-old female fetus with arachnoid cyst.	89
96	hemorrhagic posterior fossa arachnoid cyst	90
97	Arachnoid cyst in a fetus at 27 weeks Coronal image	90
98	Arnold-Chiari malformation in 20 weeks fetus, Sagittal MR image.	91
99	Arnold-Chiari malformation in 20 week old fetus On a coronal MR image.	91
100	Antenatal magnetic resonance image shows a Chiari II malformation in a fetus	92
101	Chiari II malformation and myelomeningocele (23 weeks' gestation).	92
102	24-gestational-week-old fetus with a large hypointense hematoma in the posterior foss	93
103	meningomyelocele in the 38-week fetal spine	94
104	segmental spinal dysgenesis	95
105	cervical diastematomyelia	96
106	intraspinal cysts and tethered cord in a fetus at 36 weeks	96
107	diastematomyelia	97
108	26-weeks' gestation fetus with sacrococcygeal teratoma	99
109	22-weeks' gestation fetus with sacrococcygeal teratoma.	99

دور الرنين المغناطيسي في تشخيص الخلل التكويني في الجهاز العصبي للاجنه داخل الرحم

رسالة توطئة للحصول علي درجة الماجستير في الاشعه التشخيصيه

مقدمة من:

الطبيبة/ سوزان رمضان الشرشابي بكالوريوس الطب والجراحة

تحت إشراف

ارد/ سامح محمد عبد الوهاب أستاذ الاشعه التشخيصيه كلية الطب- جامعة عين شمس

د/ أحمد فتحي عبد الغني

مدرس الاشعة التشخيصيه كلية الطب- جامعة عين شمس

> كليـــــة الطب جامعة عين شمس 2010

الملخص العربي

يعتبر التصوير السريع للجنين باستخدام الرنين المغناطيسي من الوسائل الامنه والدقيقه في اكتشاف عيوب الجهازالعصبي المركزي والتي تستعصي علي الموجات فوق الصوتيه في تشخيصها ودلك لتفوق الرنين المغناطيسي في توضيح التفاصيل التشريحيه للجنين وتتبع نمو اجزاء المخ والنخاع الشوكي وايضا في توضيح عيوبهما مثل توقف او اختلال النمو في اي جزء منهما وهو أيضا يؤكد ثبوت العيوب الخلقيه التي تم تشخيصها باستخدام الموجات فوق الصوتيه وتحديد ان كانت مصحوبه بعيوب خلقيه الخرى أو لا.

أيضا يتفوق الرنين المغناطيسي قدرته علي تصوير الجزء الخلفي من العلبه المخيه خاصه بعد تعظمها حيت يصعب علي الموجات فوق الصوتيه تصويرمنطقه المخيخ وجزع المخ بدقه وتحديد عيوبهما الخلقيه مثل عدم تكوين اجزاء منهما او وجودهما في مكان ادني من الطبيعي ولهذا يستخدم تصوير الجنين بالرنين المغناطيسي في ارشاد خطط العلاج واتخاد القرار أيضا يمكن الاعتماد علي تصوير الجنين قبل الولاده لتفادي تصويره بعد الولاده والتي قد تحتاج حقن الطفل بمهديء خاصة لو كانت حاله الطفل حرجه.

Acknowledgment

Thanks are given to **Allah** the source of all knowledge, by whose abundant aid this work has come to fruition.

Words stand short when coming to express my deep gratitude and great thanks to Professor/Sameh Mohamed

Abd Elwahab Professor of Radiodiagnosis, Faculty of Medicine Ain Shams University.

I am deeply grateful to **Dr/ Ahmad Fathy AbdElgahny** Lecturer of Radiodiagnosis, Faculty of

Medicine Ain Shams University.

I am also delegated to express my deep gratitude and thanks to all my dear professors, my colleagues and my family.

Susan Ramadan Elshershaby.

Introduction

The evaluation of fetal CNS by US is limited because of the nonspecific appearance of some anomalies, technical factors that make visualization of the brain near the transducer difficult and visualization of the posterior fossa difficult late in gestation, and subtle parenchymal abnormalities that frequently can not be visualized. (Levine D. et al., 2003).

Studies have demonstrated the benefit of MRI in fetuses with CNS abnormalities, MRI can detect the fetal brain tissue more clearly, observe the myelinating process, and provide more information which can not be obtained from US. (Coakley F V. et al., 1999).

Meanwhile, MRI was independent of amniotic fluid volume, maternal somatotype, fetal skull, and the maternal pelvic skeleton. Congenital anomalies of the CNS such as partial or complete agenesis of the corpus callosum, Dandy-Walker malformation, periventricular nodular heterotopia more reliably on the basis of fetal MRI compared with prenatal sonography (Kubik-Huch RA. et al., 2000).

Sonography is the primary technique for fetal imaging because of its proven utility, widespread availability, and relatively low cost. However, limitations include a small field of view, limited soft-tissue acoustic contrast, beam attenuation by adipose tissue, poor image quality in oligohydramnios, and limited visualization of the posterior fossa after 33 weeks' gestation because of calvarial calcification (*Garel C. et al.*, 1998).

Accordingly, sonographic findings are occasionally inconclusive or insufficient to guide treatment choices (Angtuaco T. et al., 1992).

Ø

Over the past decade, fetal MRI has emerged as a clinically useful supplement to sonography and is rapidly moving from the realm of select academic medical centers into community practice. Advances in fetal medicine and surgery have also driven the development of fetal MRI, Any radiologist who performs prenatal sonography can expect to see occasional patients who will benefit from the incremental information provided by MRI. (Coakley FV. et al., 2001).

Aim of the work

The aim of this work is to evaluate the role of fetal MRI in diagnosis of intrauterine neurological Congenital anomalies