

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

FACULTY OF MEDICINE MENOUFIYA UNIVERSITY

616,01

THE RENIN - ANGIOTENSIN - ALDOSTERONE SYSTEM IN HEPATORENAL SYNDROME.

THESIS
SUBMITTED FOR PARTIAL FULFILLMENT OF M.D. DEGREE
IN CLINICAL BIOCHEMISTRY

By
Soha Zaky El-Shennawy
M.B.,B.ch. and M.Sc degree in clinical biochemistry

Supervised By

Prof. Dr.Ahmed Abbas Raouf

Chairman of Biochemistry Department National Liver Institute-Menoufiya university

Prof.Dr. Imam Abd El- Latif Waked

Professor of Internal Medicine Department and Vice Dean of Environmental Affairs National Liver Institute – Menoufiya University.

Prof.Dr. Naglaa Mohamed Ghanayem

Assistant Professor and acting chairman of Biochemistry Department Faculty of Medicine – Menoufiya University.

Dr. Hala Hany Mohamed El-Said

Assistant Professor of Biochemistry
National Liver Institute - Menoufiya University.

2004

		۵
		•
		•

ACKNOWLEDGEMENT

Before all, I should express my deep thanks to GOD, without HIS great blessing, I would never accomplish my work

I also feel deeply thankful to **Prof. Dr. Ahmed Abbas Raouf**, Professor and chairman of Biochemistry Department, National Liver Institute, Menoufiya University, with his critical mind brought out the final points of my research and opened new paths of thoughts which were formerly closed. His contribution is without doubt, great.

I am also grateful to **Prof. Dr. Imam Abd El-Latif Waked**, Professor of Internal Medicine Department and Vice Dean of Environmental Affairs, National Liver Institute, Menoufiya University, for his expert guidance, illuminating remarks and for his sympathetic attitude.

I am deeply grateful to **Prof. Dr. Naglaa Mohamed Ghanayem**, Assistant Professor and acting chairman of
Medical Biochemistry Department, Faculty of Medicine,
Menoufiya University for her continuous encouragement,
endless support and precious advice.

Deep gratitude to **Dr. Hala Hany Mohamed El-Said**, Assistant Professor of Biochemistry, National Liver Institute, Menoufiya University, for her great support and tremendous effort she has done in the meticulous revision of the whole work.

A CONTRACTOR OF THE STATE OF TH

List of Figures

		•	
Fig. ((I):	Components of nephron	7
Fig. ((2):	The renin-angiotensin-aldosterone system	9
Fig.	(3):	Microscopic liver architecture	20
Fig.	(4):	The forward theory of ascites formation	42
Fig.	(5):	Proposed mechanism of increased water retention in cirrhosis	51
Fig.	(6):	The neurohumoral effects of RAAS and AVP on systemic circulation and renal function in cirrhosis with ascites	54
Fig.	(7):	Altered renal autoregulation in HRS	58
Fig.	<i>(8):</i>	Pathogenesis of HRS as proposed by the arterial vasodilation hypothesis	60
Fig	<i>(</i> 9):	Probability of survival of patients with type-1HRS	74
		Proposed pathogenesis of change of type-2 HRS to type-1 HRS	77
		Different therapeutic approaches used in the management of HRS	85
		Generated angiotensin-1 standard curve	96
Fig.	(13):	Angiotensin II standard curve	98
Fig.	(14):	Aldosterone standard curve	102
Fig.	(15):	Distribution of studied groups according to age	106
Fig.	(16):	Distribution of studied groups according to gender	107
Fig.	(17):	Comparison of liver enzymes profile among the studied groups	110
Fig.	(18):	Comparison of liver function profile among the studied groups	111
Fig.	(19):	Comparison of kidney function profile among the studied groups	114
Fig.	(20):	Comparison of urine analysis data among the studied groups	115
Fig.	(21):	Comparison of renin, angiotensin II and aldosterone among the studied groups	118

List of Abbreviations

ACE Angiotensin converting enzyme

ADH Antidiuretic hormone

AI Angiotensin I

AII Angiotensin II

AIII Angiotensin III

Alb Albumin

ALP Alkaline phosphatase

ALT Alanine aminotransferase

AST Aspartate aminotransferase

ATN Acute tubular necrosis

AVP Arginine vasopressin

BUN Blood urea nitrogen

D. Bil. Direct bilirubin

ET-1 Endothelin-1

FHF Fulminant hepatic failure

GFR Glomerular filtration rate

GGT Gamma glutamyl transferase

LFTs Liver function tests

HRS Hepatorenal syndrome

NO Nitric oxide

PGE Prostaglandin E

PGs Prostaglandins

PRA Plasma renin activity

PSE Portosystemic encephalopathy

RAAS Renin-angiotensin aldosterone system

SBP Spontaneous bacterial peritonitis

SNS Sympathetic nervous system

T. Bil. Total bilirubin

TIPS Transjugular intrahepatic portosystemic shunt.

TP Total protein

TABLE OF CONTENTS

Topic	Page
Introduction	1
Aim of the work	4
Review of Literature	5
• The renin-angiotensin-aldosterone system	5
• Advanced liver disease	18
• Ascites	39
Hepatorenal syndrome	55
Subjects and Methods	87
Results	105
Discussion	126
Conclusion	143
Recommendations	144
Summary	145
References	148
Appendix	181
Arabic Summary	

List of Tables

	Table	Page
Table (1):	The most common causes of ciπhosis	24
Table (2):	Child Pugh classification	25
Table (3):	Grades of portosystemic encephalopathy	35
Table (4):	Vasoactive factors involved in HRS	62
Table (5):	International Ascites Club's diagnostic criteria of HRS	79
Table (6):	Differential diagnosis of renal failure in cirrhosis	82
<i>Table (7):</i>	The age of studied groups	106
Table (8):	The gender of studied groups	107
Table (9):	Statistical comparison of liver function profile among the studied groups	108
Table (10):	Statistical comparison of liver function profile among the patients groups	109
Table (11):	Statistical comparison of kidney function profile and urine analysis data among the studied groups	112
Table (12):	Statistical comparison of kidney function profile and urine analysis data among the patients groups	113
Table (13):	Statistical comparison of renin, angiotensin II and aldosterone among the studied groups	116
Table (14):	Statistical comparison of renin, angiotensin II and aldosterone among the patients groups	
Table (15):	Correlation coefficient (r) between urea and each of serum renin, angiotensin II and aldosterone in each group	119
Table (16):	Correlation coefficient (r) between creatinine and each of serum renin, angiotensin II and aldosterone in each group	120
Table (17):	Correlation coefficient (r) between serum Na and each of serum renin, angiotensin II and aldosterone in each group	121
Table (18):	Correlation coefficient (r) between serum K and each of serum renin, angiotensin II and aldosterone in each group	122
Table (19).	Correlation coefficient (r) between urine Na and each of serum renin, angiotensin II and aldosterone in each group	123
Table (20)	Correlation coefficient (r) between urine TP and each of serum renin, angiotensin II and aldosterone in each group	124
Table (21).	Correlation coefficient (r) between urine volume and each of serum renin angiotensin II and aldosterone in each group	, 125

·	
4114	
	· · · · · · · · · · · · · · · · · · ·
	
	
	
	· · · · · · · · · · · · · · · · · · ·

ON	

INTRODUCTION

			;
			ļ
			,
			j
			4