

IMPLEMENTATION OF AN ECONOMICAL MULTIFUNCTIONAL DIGITAL RELAY FOR THREE PHASE INDUCTION MOTORS

By
Eng. Mohamed Ahmed Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

ELECTRICAL POWER AND MACHINE ENGINEERING

IMPLEMENTATION OF AN ECONOMICAL MULTIFUNCTIONAL DIGITAL RELAY FOR THREE PHASE INDUCTION MOTORS

By Eng. Mohamed Ahmed Ahmed Elsayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

ELECTRICAL POWER AND MACHINE ENGINEERING

Under the Supervision of

Prof. Dr. Essam eldin M. Abo elzahaab

Electrical power and machine Department

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

IMPLEMENTATION OF AN ECONOMICAL MULTIFUNCTIONAL DIGITAL RELAY FOR THREE PHASE INDUCTION MOTORS

By Eng. Mohamed Ahmed Elsayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In ELECTRICAL POWER AND MACHINE ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam eldin M. Abo elzahaab Thesis Advisor and Committee Member

Prof. Dr. Mhmoud I. Algilany Internal Examiner

Prof. Dr. Almoatz Y. Abdo alaziz

External Examiner

(Faculity of Engineering Ain shows University)

(Faculity of Engineering – Ain shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer:** Mohamed Ahmed El sayed.

Date of Birth: 16 /4 /1977

Nationality: Egyptian

E-mail: m4aed@yahoo.com

Phone.: 01004942465

Address: Manshat al kmnater – Imbaba - Giza

Registration Date: 1 / 10 /2011

Awarding Date: / /

Degree: Master

Department: Electrical Power and machine

Supervisors: Prof. Dr. Essam el Din Mohamed Abo el Zahab

Examiners:

Prof. Dr. Essam El Din Mohamed Abo El Zahab - electrical power and machine department – Cairo university (Thesis main advisor)

Prof. Dr. Mhmoud Ibrahim Al Gilany - electrical power and machine department - Cairo university (Internal)

Prof. Dr. Almoatz Yosef Abdo Alaziz – Electrical power and machine department – (Ain Shams university) (External)

Title of Thesis: IMPLEMENTATION OF AN ECONOMICAL MULTIFUNCTIONAL DIGITAL RELAY FOR THREE PHASE INDUCTION MOTORS

Key Words: (protection relay; Digital; Intelligent; 3 phase induction motor)

Summary:

This thesis presents an integrated, economical, actual, and industrial multifunction digital relay MDR1 to be used in the protection of three phase induction motor. Possible faults are studied with their causes. Recommended protective functions are presented and implemented using micro-controller 8951. Flowcharts for each routine for each function are implemented with corresponding software programs. Nine functions were designed and implemented inside the relay MDR1 and these functions are protection against over and under current, over and under voltage, unbalanced currents and voltages, over temperature of windings, and earth fault protection.

ACKNOWLEDGMENT

I would like to express my deep appreciation to

Pro. Dr. Essam Abou El-Zahab for his valuable suggestions, constant advice and generous help in many occasions throughout this research.

TABLE OF CONTENTS

		Page
ACKNOWLEDG	EMENT	i
TABLE OF CONENTS		ii
LIST OF TABLE	rs.	vii
LIST OF TRIBLE		VII
LIST OF FIGUR	ES	viii
NOMENCLATU	RE	x
ABSTRACT		xiii
CHAPTER 1: INT	TRODUCTION	
1.1	Introduction	1
1.2	Thesis objectives	1
1.3	Thesis outlines	1
CHAPTER 2: AB	NORMAL CONDITIONS ON THE THREE PHASE INDUC	CTION MOTOR
2.1 I	ntroduction	3
	Jnder voltage	3
	2.2.1 Effect of under voltage on the motor efficiency, RPM,	
,	and current	3
	2.2.2 Causes of under voltage Over voltage	4 4
	Jnbalanced voltage and current	5
2.1	2.4.1 Voltage unbalance factor	5
	2.4.2 Causes of unbalanced voltage conditions	6
	2.4.3 Single phasing and causes of single phasing condition	6
2.5	Loss of load or (under current)	7
2.6	Frequency variation	7
2.7 N	Mechanical jam	7

CHAPTER 3: THREE PHASE INDUCTION MOTOR PROTECTION FUNCTIONS

3.1	Introduction	8
3.2	Thermal motor protection	8
	3.2.1 Thermal protection with temperature sensors	10
	3.2.2 Thermal protection with current sensing	11
	3.2.2.1 Electromechanical over current relay	11
	3.2.2.2 Electronic overload relays	11
3.3	single phase and line unbalance protection	12
3.4	start/stall protection	13
	3.4.1 Number of starts limitation	14
3.5	Short circuit protection	15
3.6	Ground fault protection	15
	3.6.1 Zero sequence CT connection	16
	3.6.2 Residual ground fault connection	16
3.7	Under & over voltage protection	17
	Under current (loss of load) protection	17
CHAPTER	4: GENERAL CONSTRUCTION OF THE PROPOSED MUL DIGITAL RELAY MDR1	TIFUNCTION
4.1	Introduction	18
4.2	General structure of the system	18
	4.2.1 Proposed Microcontroller ATM89S51	19
	4.2.1.1 Microcontroller comparison with human	19
	4.2.1.2 Microcontroller definitions	19
	4.2.1.3 Basic features of micro ATM89S51 4.2.1.4 Pin assignment	19 20
	4.2.1.5 Memory map	20
	4.2.1.5 Wemory map	20
	4.2.2 Proposed analog to digital converter ADC0804	21
	4.2.3 Seven segment display interfacing and programming	22
	4.2.4 Relay output circuit	24
	4.2.5 Proposed temperature measurement sensor	25
	4.2.6 Current and voltage sensors (CT&VT)	25
	4.2.7 Current and voltage measurement circuits (interfacing)	25
	4.2.7.1 Current measurement circuit 4.2.7.2 Voltage measurement circuit	26 26
	4.2.7.2 Voltage measurement circuit	20
CHAPTEI	R 5: MDR1 RELAY PROTECTION FUNCTION	
5.1	Introduction	30
5.2	Unbalance protection system	31
	5.2.1 Proposed hardware	32

	5.2.2 Proposed software of the system	33
5.3	Over, under, and single phasing protection system	34
	5.3.1 Proposed hardware	35
	5.3.2 Proposed software of the system	35
5.4	Over and under current protection system	38
	5.4.1 Proposed hardware	38
	5.4.2 Proposed software of the system	39
5.5	Over temperature and earth fault pro. System	43
	5.5.1 Proposed hardware	43
	5.5.2 Proposed software of the system	44
5.6	Display system	47
	5.6.1 Proposed hardware	47
	5.6.2 Proposed software of the display system	48
5.7	Power supply system	51
	5.7.1 The main power supply circuit	51
	5.7.2 Over current delay timer circuit	52
	5.7.3 Residual current measuring circuit	52
	5.7.4 The reset relays	52
CHAPTER 6	5: MDR1 SPECIFICTIONS	
6.1	General	53
6.2	Input circuits	53
	6.2.1 Auxiliary power supply	53
	6.2.2 Phase current inputs	53
	6.2.3 Residual current inputs	53
	6.2.4 Voltage inputs	53
	6.2.5 Temperature LM35 input	53
6.3	Output circuits	53
	6.3.1 Output relays	53
	6.3.2 Display	53
6.4	Protective function settings	53
	6.4.1 Under current settings -37	53
	6.4.2 Phase over current settings -50/51	54
	6.4.3 Phase unbalance current settings -46	54
	6.4.4 Phase unbalanced voltage settings -46	54
	6.4.5 Over voltage settings -59	54
	6.4.6 Under voltage settings -27	54
	6.4.7 Over temperature setting	54
	6.4.8 Earth fault settings -50N/51N	54
	6.4.9 Phase loss settings	54
6.5	MGF1 layout and dimension	55
CHAPTER 7	: EXPERIMENTAL IMPLEMENTION AND RESULT	S ANALYSIS
7.1	Introduction	57

7.2	Over current inverse curve results	57
7.3	%Under current and it's trip time	58
7.4	%Unbalance current and its trip time	59
7.5	%Unbalance voltage and its trip time	59
7.6	%Over voltage and it's trip time	60
7.7	%Under voltage and it's trip time	61
7.8	Maximum temperature	61
7.9	Earth fault and its trip time	61
CHAPTER	8: TECHNICAL EVALUATION AND ECONOMICAL MER	ITES OF THE
	PROPOSED MDR1 RELAY	
8.1	Introduction	63
8.2	Technical advantages of the MDR1 multifunction relay	63
8.3	Disadvantages of MDR1 digital multifunction relay	64
8.4	Economical advantages of MDR1 multifunction relay	64
	8.4.1 Cost of unbalance protection system	65
	8.4.2 Cost of over and under current protection system	65
	8.4.3 Cost of over and under voltage protection system	66
	8.4.4 Cost of over temperature and earth fault pro. System	67
	8.4.5 Cost of voltage measuring and interface system	67
	8.4.6 Cost of current measuring and interface system	67
	8.4.7 Cost of the display system	68
	8.4.8 Cost of power supply system	68
	8.4.9 The total cost of the system	69
	8.4.10 Comparison between the price of the MDR1 and other	
	Similar relays in the market	70
CHAPTER	9: CONCLUSIONS	73
REFERENCES		74
APPENDIX	X A: SFR AND INSTRUCTION SET	
	R (Special Function Register)	76
	struction set	77
APPENDIX	K B: LM35 FEATURES	79
	K C: UNBALANCE SYSTEM	
	Schematic diagram	80
	PCB (Printed Circuit Board)	81
	Unbalance assembly program	82
APPENDIX	X D: OVER, UNDER VOLTAGE, AND SINGLE PHASING	SYSTEM
D.1	Schematic diagram	84
	PCB (Printed Circuit Board)	85

D.3	Over, under voltage, and single assembly program	86
APPEND	IX E: OVER AND ANDER CURRENT SYSTEM	
E.1	Schematic diagram	88
E.2	PCB (Printed Circuit Board)	89
E.3	Over and under current assembly program	90
APPEND	IX F: OVER TEMP. AND EARTH FAULT SYSTEM	
F.1	Schematic diagram	92
F.2	PCB (Printed Circuit Board)	93
F.3		94
APPEND	IX G: DISPLAY SYSTEM	
G.1	Schematic diagram	96
G.2	PCB (Printed Circuit Board)	97
G.3	Display assembly program	98
APPEND	IX H: POWER SUPPLY SYSTEM	
H.1	Schematic diagram	99
	PCB (Printed Circuit Board)	100
APPEND	IX I: VOLTAGE AND CURRENT MEASURING SYSTEM	
I.1	PCB (Printed Circuit Board) of voltage measurement	101
I.2	PCB (Printed Circuit Board) of current measurement	102

LIST OF TABLES

- 1- Table 2.1: Percentage of load reduction with voltage unbalance
- 2- Table 3.1 : summary of IEEE and EPRI Motor reliability surveys
- 3- Table 5.1: over current inverse characteristic curves
- 4- Table 7.1: over current inverse characteristic results calculated and actual
- 5- Table 7.2:% under current setting and maximum error
- 6- Table 7.3: % und. cur. trip time error values
- 7- Table 7.4: %Unbalanced current setting and maximum error
- 8- Table 7.5: % Unb. Cur. trip time error values
- 9- Table 7.6: %Unbalance voltage settings and maximum error
- 10- Table 7.7: %Unb. Voltage trip time error values
- 11- Table 7.8: %Over voltage settings and maximum error
- 12- Table 7.9: % over volt. trip time error values
- 13- Table 7.10: "Under voltage settings and maximum error
- 14- Table 7.11: %Und. Volt. trip time error values
- 15- Table 7.12: Maximum temperature settings and maximum error
- 16- Table 7.13: Earth fault settings and maximum error
- 17- Table 7.14: EF trip time error values
- 18-Table 8.1: Cost of unbalance protection system
- 19-Table 8.2: Cost of over and under current protection system
- 20-Table 8.3: Cost of over and under voltage protection system
- 21-Table 8.4: Cost of over temperature and earth fault system
- 22-Table 8.5: Cost of voltage measuring system
- 23-Table 8.6: Cost of current measuring system
- 24- Table 8.7: Cost of display system
- 25- Table 8.8: Cost power supply system
- 26- Table 8.9: Total cost of the relay
- 27- Table 8.10: Comparison between MDR1 and Yueging Aukeman relay
- 28- Table 8.11: Comparison between MDR1 and SEL-710 relay
- 29- Table 8.12: Comparison between MDR1 and (ABB) REM543 relay

LIST OF FIGURES

- 1- Figure 2.1: Voltage variation effects on motor performance
- 2- Figure 2.2 :Example of voltage surge
- 3- Figure 2.3 :De-rating factor from NEMA MG1
- 4- Figure 3.1 :Distribution of losses in motor
- 5- Figure 3.2 : Positive and negative sequence components
- 6- Figure 3.3: Lifetime of motor depending on operating current
- 7- Figure 3.4 :Insulation resistance & temperature
- 8- Figure 3.5 :Transistor temperature sensor
- 9- Figure 3.6: Stall protection
- 10- Figure 3.7: Number of starts without exceeding maximum temperature
- 11- Figure 3.8 :Zero sequence CT connection
- 12- Figure 3.9 :Residual ground fault connection
- 13- Figure 4.1 :General construction of the system MDR1
- 14- Figure 4.2 :Pin assignment for ATMEL89S51
- 15- Figure 4.3: Memory map
- 16- Figure 4.4: The sequence of instruction operation
- 17- Figure 4.5: Pin diagram of ADC0804
- 18- Figure 4.6:7-Segment display
- 19- Figure 4.7: Pin diagram
- 20- Figure 4.8 :Common anode and common cathode seven segments
- 21- Figure 4.9: Relaying output circuit
- 22- Figure 4.10: LM35 connection
- 23- Figure 4.11: Schematic diagram of current measuring interface circuit
- 24- Figure 4.12: Voltage measuring interface circuit
- 25- Figure 5.1: Protection functions of MDR1 multifunction relay
- 26- Figure 5.2 :Block diagram of unbalance protection system
- 27- Figure 5.3 :RESET circuit for the microcontroller ATM89S51
- 28- Figure 5.4 :Clock circuit for the microcontroller ATM89S51
- 29- Figure 5.5: The flowchart of the unbalance voltage or current
- 30- Figure 5.6 :Block diagram of the over/under voltage protection system
- 31- Figure 5.7: Flow chart of the over and under voltage protection system
- 32- Figure 5.8 :Block diagram of the over/under current protection system
- 33- Figure 5.9: The flow chart of the over/under current protection system
- 34- Figure 5.10: The inverse characteristic curves for over current protection system
- 35- Figure 5.11 :Block diagram of the over temperature and earth fault protection system
- 36- Figure 5.12: The flow chart of the over temperature and earth fault system
- 37- Figure 5.13 :Operation of the motor after cooling

- 38- Figure 5.14 :The lockout relay
- 39- Figure 5.15: The flow chart of the display system
- 40- Figure 6.1: The MDR1 internal layout
- 41- Figure 6.2 :External layout
- 42- Figure 6.3 :MDR1 dimensions
- 43- Figure 7.1 :Comparison between the calculated and actual inverse curves
- 44- Figure B.1:Pin diagram for LM35
- 45-Figure C.1: Unbalance voltage or current
- 46- Figure C.2 : The printed circuit board (PCB) of the unbalance system
- 47- Figure D.1 : Schematic diagram of over, under voltage, and single phasing system
- 48- Figure D.2 : The printed circuit board (PCB) of the Over, under voltage, and single phasing system
- 49- Figure E.1: Over and under current system
- 50- Figure E.2: The printed circuit board (PCB) of the over and under current system
- 51- Figure F.1: The schematic of the over temperature and earth fault system
- 52- Figure F.2: The printed circuit board (PCB) of the over temperature and earth fault system
- 53- Figure G.1: Schematic diagram of the display system
- 54- Figure G.2: The printed circuit board (PCB) of the display system
- 55- Figure H.1: The schematic diagram of the power supply system
- 56- Figure H.2 : PCB of the power supply system
- 57- Figure I.1: PCB of the voltage measurement circuit
- 58- Figure I.2: PCB of the current measurement circuit

NOMENCLATURE

ANSI American National Standard Institute

ALE Address Latch Enable

CSA Canadian standard administration

CUw1 Loss in Stator CUw2 Loss in Rotor

CT Current Transformer
CPU Central Processing Unit

DOL Direct-On-Line
DPH Data Pointer high
DPL Data Pointer Low
DPTR Data Pointer 16b
DIL Dual In Line

EPRI Electrical Power Research Institute

EA Enable All

E Induced electromotive force

EF Earth Fault

E_n Nominal voltage

EPROM Electrical Programmable Read Only Memory

FLP Accuracy limit factor

IEC International Electrical Commission

 I_{min} Minimum phase current I_{max} Maximum phase current

I_N Full load current

I_{start} Root mean square value of staring current

I_{pstart} Peak value of starting current

IEEE Institute of Electrical and Electronic Engineers

 I_n Reference (base) current I_{max} Maximum phase current

I/O Input/Output
I_E Earth fault

I_{residu} Residual current

I_{En} Nominal Residual current

K Multiplier factorLu Under voltage

MDR1 Motor Digital Relay one

NEMA National Electrical Manufacturers Association

Oc Over current

Ou Over voltage

Oc° Over temperature

PL Phase Loss

PSW Program Status Word PC Program Counter PCB Printed Circuit Board

RPM Revolution per Minuit ROM Read Only Memory

RAM Random Access Memory

ST The start setting

SFR Special Function Register SCON Serial CON registers

SBUF Serial Buffer registers

SPDT Single Pole Double Through

T_{rise.unb} Higher temperatures due to voltage unbalance

 $T_{rise,rated}$ The maximum temperature rating of insulation that can be acceptable

T_{start} Maximum starting time of motor

TH0 Timer High TL0 Timer Low

TMOD Timer MOD registersTCON Timer CON registersT Over current trip timeUI Unbalanced current

Uc Under current

Uu Unbalanced voltage

VUF Voltage Unbalance Factor

V_{avg} Average voltage

 V_n Negative sequence voltage V_P Positive sequence voltage

VT Voltage Transformer

Vo Output voltage

 V_{min} Minimum phase voltage V_{max} Maximum phase voltage

V_N Full load voltage W1 Input to Motor

Wo Iron Loss W2 Input to Rotor

W_{ST} Stray Load Loss

W_{RR} Power in Rotating Field

W_{DEV} Power Developed