دراسات وراثية جزيئية على تحمل الحرارة في الذرة الشامية

رسالة مقدمة من

فاطمة السيد محمود محمد

بكالوريوس علوم زراعية (وراثة) ، جامعة الزقازيق ، 2004

للحصول على درجة الماجستير في العلوم الزراعية (وراثة)

تحت اشراف

د. محمد عبدالسلام راشد

أستاذ الوراثة ، قسم الوراثة ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. أيمن حنفي عطا

أستاذ الوراثة ، قسم الوراثة ، كلية الزراعة ، جامعة عين شمس

د. محمود حسين أبوضيف

أستاذ الوراثة ، قسم الوراثة والسيتولوجي ، شعبة الهندسة الوراثية والبيوتكنولوجي ، المركز القومي للبحوث

> قسم الوراثة كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة دراسات وراثية جزيئية على تحمل الحرارة في الذرة الشامية

رسالة مقدمة من

فاطمة السيد محمود محمد

بكالوريوس علوم زراعية (وراثة) ، جامعة الزقازيق ، 200٤

للحصول على درجة الماجستير في العلوم الزراعية (وراثة)

وقد تمت مناقشة الرسالة والموافقة عليها اللجنة:

د. محمود محمد صقر	
أستاذ الوراثة الجزيئية ، المركز القومي للبحوث ، نائب رئيس أكاديمية البحث العلمي	
والتكنولوجي	
د. إيمان محمود فهمى	
أستاذ الوراثة ، كلية الزراعة ، جامعة عين شمس	
د. أيمن حنفي عطا	1
أستاذ الوراثة ، كلية الزراعة ، جامعة عين شمس	
د. محمد عبدالسلام راشد	
أستاذ الوراثة ، كلية الزراعة ، جامعة عين شمس	

تاریخ المناقشة: ۲۶ / ۱۱ / ۲۰۱۰ جامعة عین شمس کلیة الزراعة

رسالة ماجستير

اسم الطالبة : فاطمة السيد محمود محمد

عنوان الرسالة : دراسات وراثية جزيئية على تحمل الحرارة في

الذرة الشامية

اسم الدرجة : ماجستير في العلوم الزراعية (وراثة)

لجنة الإشراف:

د. محمد عبدالسلام راشد

أستاذ الوراثة ، قسم الوراثة ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. أيمن حنفي عطا

أستاذ الوراثة ، قسم الوراثة ، كلية الزراعة ، جامعة عين شمس

د. محمود حسين أبوضيف

أستاذ الوراثة ، قسم الوراثة والسيتولوجي ، شعبة الهندسة الوراثية والبيوتكنولوجي ، المركز القومي للبحوث

تاريخ التسجيل: ١١ / ٩ / ٢٠٠٦ الدراسات العليا

اجيزت الرسالة بتاريخ 24 / 11 / 2010

ختم الاجازة

موافقة مجلس الجامعة / / 2010

موافقة مجلس الكلية / / 2010

MOLECULAR GENETIC STUDIES ON HEAT TOLERANCE IN MAIZE (ZEA MAYS L.)

BY

FATMA EL-SAYED MAHMOUD MOHAMED

B.Sc. Agric. Sc. (Genetics), Zagazig University, 2004

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval sheet

MOLECULAR GENETIC STUDIES ON HEAT TOLERANCE IN MAIZE (ZEA MAYS L.)

BY

FATMA EL-SAYED MAHMOUD MOHAMED

B. Sc. Agric. Sc. (Genetics), Zagazig University, 2004

This thesis for M. Sc. degree has been approved by:
Dr. Mahmoud Mohamed Saker
Research Prof. of Molecular Genetics, National Research Center
Vice-President Academy of Scientific Research and Technolog
Dr. Eman Mahmoud Fahmy
Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Dr. Ayman Hanafy Atta
Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Dr. Mohamed Abdel-Salam Rashed
Prof. of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: $24 / 11 / \dots$

MOLECULAR GENETIC STUDIES ON HEAT TOLERANCE IN MAIZE (ZEA MAYS L.)

BY

FATMA EL-SAYED MAHMOUD MOHAMED

B. Sc. Agric. Sc. (Genetics), Zagazig University, 2004

Under the supervision of:

Dr. Mohamed Abdel-Salam Rashed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Ayman Hanafy Atta

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mahmoud Hussien Abou-Deif

Research Prof. of Genetics, Department of Genetics & Cytology, National Research Center.

ABSTRACT

Fatma El-Sayed Mahmoud: Molecular Genetic Studies on Heat Tolerance in Maize (*Zea Mays L.*). Unpublished M. Sc. Thesis, Department of Genetics, Faculty of Agriculture, University of Ain Shams, 2010.

The protein fingerprints of 14 inbred lines were performed using grain water-soluble protein electeophoretic analysis. The protein electrophoretic patterns showed 16 bands, 10 bands of them showed differences between inbred lines. The bands identified 11 inbreds in distinct patterns indicating different genotypes. The effect of high temperature on 17 maize inbred lines exposed to 35°C and 45°C for 4 hours at 14-days old besides control (25°C) was studied. Seven bands of heat shock proteins with molecular weights of 54.6, 28.7, 24.3, 18.2, 18, 14.2 and 12.8 kDa were expressed in ten inbred lines subjected to 45°C. Nine random primers were used to identify and characterize 17 maize inbred lines by RAPD-PCR analysis. The results indicated distinct differences could be used for the identification of maize inbred lines. A total of 106 amplified DNA fragments ranging in size from 1529 to 163 base pairs were recorded, whereas 83 fragments were polymorphic and 23 fragments were monomorphic. The genetic similarity values showed substantial differences among the maize inbred lines. The dendrogram showed that the 17 maize inbred lines could be divided into two main clusters. Four pairs of specific primers were used to amplify thermotolerance gene from the local maize inbred line "K1". The sequence of the first fragment gave 241 nucleotide base pairs showed 100% identity in 220 bp with Zea mays low molecular weight heat shock protein (hsp22) mRNA.

Key words: Maize, SDS-PAGE, Heat shock protein gene, RAPD-PCR, Electrophoresis.

AKNOWLEDGMENT

The author wishes to express her sincere gratitude to **Prof. Dr. M. A. Rashed,** Professor of Genetics, Faculty of Agriculture, Ain Shams University for suggesting the problem, continuous supervision, providing the necessary advices and energetic guidance through out the course.

The author expresses her sincere appreciation to **Dr. A. H. Atta**, Professor of Genetics, Faculty of Agriculture, Ain Shams Univ. for his kind supervision and his interest of this work.

The author also wishes to express her sincere appreciation to **Dr. M. H. Abou-Deif,** Professor of Genetics and Cytology Dept., Genetic Engineering and Biotechnology Division, National Research Centre for his assistance throughout this work, and in the preparation of the manuscript.

The author also extends her appreciation to **Dr. Sabry Abdala Khatab,** Professor of Genetics and Cytology Dept., National Research Centre for his kindly supply of the maize inbred line grains for this study.

Thanks to all the staff members of Genetics Department, Faculty of Agriculture, Ain Shams University. Thanks also to all the staff members of Genetics and Cytology Dept., Genetic Engineering and Biotechnology Division, National Research Centre.

CONTENTS	Page
LIST OF TABLES	iii
LIST OF FIGURES	vi
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. Protein fingerprinting for maize genotypes	3
2. Heat tolerance proteins in maize	5
3. Evaluation the genetic diversity of maize by RAPD markers	13
4. Identification and isolation of thermo-tolerance genes	21
III. MATERIALS AND METHODS	28
1. Materials	28
2. Methods	29
2.1. Fingerprinting of seed storage protein	29
2.2. Heat shock protein analysis	29
2.2.1. Stock solutions	30
2.2.2. Sample buffers	30
2.2.3. Gel buffers	30
2.2.4. Acrylamide stocks	31
2.2.5. Electrophoresis buffer	31
2.2.6. Gel preparation	32
2.2.7. Application of samples	32
2.2.8. Electrophoretic conditions	33
2.2.9. Gel staining solution	33
2.2.10. Destaining solution	33
2.2.11. Gel analysis	33
2.3. Random amplified polymorphic DNA analysis	34
2.3.1. DNA extraction	34
2.3.2. Stock solutions	34
2.3.3. PCR primers	36
2.3.4. PCR reaction mixture	36
2.3.5. PCR program	37
2.3.6. Genetic analysis	37

2.4. Identification and isolation of thermotolerance genes	38
2.4.1. Gene specific primers	38
2.4.2. PCR reaction mixture	38
2.4.3. PCR program	39
2.4.4. Agarose gel electrophoresis	39
IV. RESULTS AND DISCUSSION	40
1. Fingerprinting of seed storage protein	40
2. Effect of high temperature on protein synthesis	46
3. Random amplified polymorphic DNA	53
3. 1. RAPD analysis using primer OP-A05	53
3. 2. RAPD analysis using primer OP-A06	56
3. 3. RAPD analysis using primer OP-A09	59
3. 4. RAPD analysis using primer OP-B05	62
3. 5. RAPD analysis using primer OP-B08	65
3. 6. RAPD analysis using primer OP-B09	68
3. 7. RAPD analysis using primer OP-B11	71
3. 8. RAPD analysis using primer OP-B14	74
3. 9. RAPD analysis using primer OP-C15	77
4. Identification and isolation of thermotolerance genes	87
V. SUMMARY	93
VI. REFERENCES	96
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
Table (1)	The 18 maize inbred lines used in the study and their pedigree	28
Table (2)	Composition of 15% resolving gel and stacking gel.	32
Table (3)	List of nine random primers and their nucleotide sequences.	36
Table (4)	List of the four specific primers and their nucleotide sequences	38
Table (5)	Densitometric analysis of water soluble protein bands (SDS-PAGE) for 14 maize inbred lines, representing band number, and molecular weight (MW), where (+) means presence and (-) means absence of band.	43
Table (6)	Genetic similarity percentage for 14 maize inbred lines based on water-soluble protein patterns	45
Table (7)	Electrophoretic patterns for seven maize inbred lines after exposing to heat shock. C (control) = 25°C, T1 (treatment 1) = 35°C and T2 (treatment 2) = 45°C, (+) means presence and (-) means absence of band.	48
Table (8)	Electrophoretic patterns for ten maize inbred lines after exposing to heat shock. C (control) = 25°C, T1 (treatment 1) = 35°C and T2 (treatment 2) = 45°C, (+) means presence and (-) means absence of band	52

Table (9)	Electrophoretic patterns of RAPD-PCR products of primer OP-A05 for 18 maize inbred lines, where (1) means presence and (0) means absence of band	55
Table (10)	Electrophoretic patterns of RAPD-PCR products of primer OP-A06 for 18 maize inbred lines, where (1) means presence and (0) means absence of band	58
Table (11)	Electrophoretic patterns of RAPD-PCR products of primer OP-A09 for 18 maize inbred lines, where (1) means presence and (0) means absence of band	61
Table (12)	Electrophoretic patterns of RAPD-PCR products of primer OP-B05 for 18 maize inbred lines, where (1) means presence and (0) means absence of band.	64
Table (13)	Electrophoretic patterns of RAPD-PCR products of primer OP-B08 for 18 maize inbred lines, where (1) means presence and (0) means absence of band.	67
Table (14)	Electrophoretic patterns of RAPD-PCR products of primer OP-B09 for 18 maize inbred lines, where (1) means presence and (0) means absence of band	70
Table (15)	Electrophoretic patterns of RAPD-PCR products of primer OP-B11 for 18 maize inbred lines, where (1) means presence and (0) means absence of band	73

Table (16)	Electrophoretic patterns of RAPD-PCR products of primer OP-B14 for 18 maize inbred lines, where (1)	
	means presence and (0) means absence of band	76
Table (17)	Electrophoretic patterns of RAPD-PCR products of primer OP-C15 for 18 maize inbred lines, where (1) means presence and (0) means absence of band	79
Table (18)	Total bands produced from RAPD-PCR for the 18 maize inbred lines using nine primers	81
Table (19)	Polymorphisms revealed by nine primers used for identification of the 18 maize inbred lines	83
Table (20)	Genetic similarity percentages of the 18 maize inbred lines based on RAPD analysis	85

LIST OF FIGURES

Figure		Page
Figure (1)	SDS-PAGE profiles of grain water-soluble proteins of 14 inbred lines of maize. M: protein markers with molecular weights; 200, 150, 120, 100, 85, 70, 60, 50, 40, 30, 25, 20 and 15 kDa.	42
Figure (2)	Dendrogram represents the genetic relationships among the fourteen maize inbred lines using UPGMA cluster analysis of Jaccard genetic similarity coefficients generated from water-soluble protein patterns	44
Figure (3)	SDS-PAGE profiles for water soluble protein of seven maize inbred lines treated with heat shock. C (control) = 25°C, T1 (Treatment 1) = 35°C and T2 (Treatment 2) = 45°C. M: protein markers	47
Figure (4)	SDS-PAGE profile for water soluble proteins of ten maize inbred lines treated with heat shock. C (control) = 25°C, T1 = 35°C and T2 = 45°C. M: protein markers	51
Figure (5)	PCR products using OP-A05 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	54
Figure (6)	PCR products using OP-A06 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	57
Figure (7)	PCR products using OP-A09 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	60
Figure (8)	PCR products using OP-B05 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	63
Figure (9)	PCR products using OP-B08 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	66

Figure (10)	PCR products using OP-B09 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	69
Figure (11)	PCR products using OP-B11 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	72
Figure (12)	PCR products using OP-B14 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	75
Figure (13)	PCR products using OP-C15 random primer for 18 inbred lines of maize. M1 and M2 DNA ladder markers	78
Figure (14)	Dendrogram represented the genetic relationships among the eighteen maize inbred lines using UPGMA cluster analysis of Jaccard genetic similarity coefficients generated from nine RAPD markers	86
Figure (15)	PCR products using four specific primers for thermotolerance gene in maize inbred line K1. Lanes 1, 2, 3 and 4 represent four fragment of the gene. M: DNA ladder marker	88
Figure (16)	DNA sequence (241 bp) of the first segment of heat shock protein gene HSP22 from the Egyptian maize inbred line K1.	89
Figure (17)	Comparison between nucleotide sequence of the first segment of maize HSP from the Egyptian maize inbred line K1	90