

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Mechanical Power Engineering

An Analytical Approach to Optimize the Performance of the Bypass for Two-Way Control Valves in Chilled Water Central Air-Conditioning Systems

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering

(Mechanical Power Engineering)

by

Hashim Ibrahim Mohamed Elzaabalawy

Bachelor of Science in Mechanical Engineering

(Mechanical Power Engineering)

Faculty of Engineering, Ain Shams University, 2014

Supervised By

Dr. Ahmed Youssef El-Assy

Dr. Mohamed Ahmed Abdelaziz

Cairo - (2016)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Mechanical Power

An Analytical Approach to Optimize the Performance of the Bypass for Two-Way Control Valves in Chilled Water Central Air-Conditioning Systems

by

Hashim Ibrahim Mohamed Elzaabalawy

Bachelor of Science in Mechanical Engineering
(Mechanical Power Engineering)

Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

Name and Affiliation	Signature
Prof Mahmoud Ahmed Fouad	
Mechanical Power, Cairo University	
Prof Nabil Abdel Aziz Mahmoud	
Mechanical Power, Ain Shams University	
Dr Ahmed Youssef El-Assy.	•••••
Mechanical Power, Ain Shams University	
•	

.

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Hashim Ibrahim Mohamed Elzaabalawy

							٥)	1	g	Ţ	1	a	t	ι	11	(2
								•										

Date:14 December 2016

Researcher Data

Name : Hashim Ibrahim Mohamed Elzaabalawy

Date of birth : 27-Septmeber-1992

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Power Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2014

Current job : Teacher Assistant

Thesis Summary

Primary-secondary pumping system is widely utilized in Heating, Ventilating, and Air Conditioning industry. This type of system has an energy saving potential over the constant speed primary pumping system. However, the system uses a surplus amount of energy that can be saved, the low delta T syndrome and low pumping efficiency are the main energy wasting reasons. The implementation of a proper design and novel control strategy can eliminate these two problems, knowing that the design of the bypass (Decoupler Bridge) is still a topic of debate. Thus, the focus in this thesis will be enhancing the design and control of the bypass and developing an energy efficient control for the secondary loop including the pumps and the two way control valves. Calculating the bypass pipe diameter and its control strategy are often estimated according to the designer experience, rather than a code of practice, the goal for this thesis is setting a guide for the bypass design. An analytical model is used to find the most efficient design, where the model simulates the water distribution loop, pumps, chillers and control valves.

Pressure drop in the system is categorized into three types; speed dependent, pipes, and controlling pressure drops. Pumps are modelled by curve fitting to real pump performance curves. Control valves are modelled with their non-linear flow characteristics. While the control scheme is applied as the signal given to the variable frequency drive on the secondary pump. The model is built to simulate chilled water system.

Results are acquired from several schemes, having different number of load terminals, each having its separate control valve, each system has its constant speed primary pumps, where one pump is installed for each chiller, and a variable speed secondary pumps set are chosen according to each system. Also the results are validated with an experimental model. The various configurations for both bypass and secondary pump control are implemented on this model, in order to demonstrate the energy savings, and also testing the performance of each system showing its effect on the heat loads. The results show that some modifications to the design can save a considerable amount of energy compared to the conventional design. As a conclusion a design guideline is suggested in this thesis for an energy efficient bypass pipe.

Key words: Primary-Secondary; Bypass; Two way control valve; Decoupler-bridge; Air Conditioning

Acknowledgment

I deeply thank Allah for granting me knowledge, strength, and a supporting family to finish my master's degree.

The completion of this degree could not have been possible without my supervisors Dr Ahmed El-Aassy and Dr Mohamed Abdelaziz. Their contributions and time spent are sincerely appreciated and gratefully acknowledged. Moreover, I would like to express my deep appreciation to the family of ASURT for their support.

Thanks to Dr Tamer El Nady for providing the pumps for the experimental setup and I also thank Paradise for Air Conditioning who erected the experimental test rig.

Finally, great thanks to my friends who helped all the way, and special thanks to my life partner Raghda Salama for her endless support.

December 2016

Table of Contents

Resea	arche	er Data	iii
Thesi	s Su	ımmary	iv
Ackn	owle	edgment	v
List o	f Fig	gures	ix
List o	f Ta	ables	xi
Nome	encla	ature	xii
Chapt	ter 1	L	1
1 I	ntro	oduction	1
1.1	9	Systems Overview:	1
1.2	ı	Problem Definition	5
1.3	ſ	Research Objectives:	5
1.4	7	Thesis Outline:	6
Chapt	ter 2	2	7
2 L	itera	ature Review	7
2.1	I	Introduction:	7
2.2	l	Literature Review:	7
2	2.2.1	Pressure Drop Across the Bypass	7
2	2.2.2	2 ΔT Across Chillers	8
2	2.2.3	B Load Variation Sensing	9
2	2.2.4	Constant Flow through Chillers	9
2	2.2.5	5 Pumping Energy Wasted	10
2.3	9	Suggested Solutions	11
2	2.3.1	L Check Valve on the Bypass	12
2	2.3.2	2 Three Way Valve on the Bypass	14
2	2.3.3	3 Other Solutions	15
2.4	9	Simulation Technique	15
2.5	ſ	Evaluation of suggested solutions	16
2	2.5.1	L Check Valve	16
2	2.5.2	2 Three Way Valve	17
2	2.5.3	3 Other Solutions	17

	2.6	Summary	18
Cl	napter	3	19
3	Mat	hematical Model	19
	3.1	Introduction:	19
	3.2	Pipes	20
	3.3	Speed Dependent Friction Losses	21
	3.4	Pump	22
	3.5	Control valves	24
	3.6	Pressure head loops	26
	3.7	Control Modeling	28
	3.8	Testing Conditions	31
Cl	napter (4	32
4	Ехр	erimental Model	32
	4.1	Introduction:	32
	4.2	Test Rig Components	32
	4.2.	1 Pumps	35
	4.2.	2 Valves	35
	4.2.3	3 Inverter and Electrical Connections	36
	4.2.	4 Pipes and Fittings	37
	4.2.	5 Pressure Sensors	39
	4.2.	6 Flow Meters	40
	4.3	Sensors Calibration	43
Cl	napter !	5	44
5	Expe	erimental Validation for the Model	44
	5.1	Introduction:	44
	5.2	Readings Recording Method	44
	5.3	Validation Approach	46
	5.4	Analytical vs Experimental	49
	5.4.	1 Varying Speed with Constant Diameter	49
	5.4.2	2 Varying Diameter with Constant Speed	55
	5.5	Error Analysis	62
	5.6	Flow through the Bypass	64

Chapte	er 6	68
6 Re	esults and Discussion	68
6.1	Introduction:	68
6.2	Bypass Dimensions:	68
6.3	Impact of the Bypass Diameter on the Power	75
6.4	Valves on the Bypass	78
6.5	Impact of the Bypass Diameter on the Pressure Drops	79
Chapte	er 7	83
7 Co	ontrol Strategy Critique	83
7.1	Introduction:	83
7.2	Primary Pumps Sequencing	83
7.3	Secondary Pump Sequencing	84
7.4	Secondary Pumps Control	86
7.5	Bypass and Load Terminals Pressure Drop	87
7.5	5.1 Load Terminals Variations	89
7.6	Experimental Analysis on Load Variation	91
Chapte	er 8	94
8 Co	onclusions and Recommendations for Future Work	94
8.1	Conclusions:	94
8.2	Recommendations for Future Work:	95
Refere	nces	96
Annend	dices	99

List of Figures

Figure 1-1. Constant flow chilled Water System	2
Figure 1-2. Primary Secondary Chilled Water System	3
Figure 1-3. Multi Secondary Chilled Water System	3
Figure 1-4. Flow control with 3 way control valve	4
Figure 1-5. Flow control with 2 way control valve	5
Figure 2-1. Check valve installed on the bypass	13
Figure 2-2. Three way valve installed on the bypass	15
Figure 3-1. Different K values for each valve openings	24
Figure 3-2. Globe valve construction	25
Figure 3-3. Pressure calculation loops	27
Figure 3-4. Parallel load terminals	28
Figure 4-1. Test Rig CAD Drawing	33
Figure 4-2. Test Rig picture	34
Figure 4-3. The secondary pump	35
Figure 4-4. Glove valves 2.5", 2", 1.5"	36
Figure 4-5. Inverter and the wiring	37
Figure 4-6. Different bypasses with different diameters	38
Figure 4-7. Pressure gauges P1, P2	39
Figure 4-8. Flow meters	
Figure 4-9. Flow meters installed on each branch	41
Figure 4-10. Sensors locations	42
Figure 4-11. Calibration procedure	43
Figure 5-1. Flow chart for the experimental setup	45
Figure 5-2. Flow chart for the mathematical model	47
Figure 5-3. Flow chart for the validation method	48
Figure 5-4. Beta 1 validation results for 3 inch bypass	50
Figure 5-5. Beta 2 validation results for 3 inch bypass	51
Figure 5-6. Beta 3 validation results for 3 inch bypass	51
Figure 5-7. Beta 1 validation results for 0.75 inch bypass	54
Figure 5-8. Beta 2 validation results for 0.75 inch bypass	55
Figure 5-9. Beta 3 validation results for 0.75 inch bypass	55
Figure 5-10. Beta 1 validation results for constant speed ratio 1	56
Figure 5-11. Beta 2 validation results for constant speed ratio 1	57
Figure 5-12. Beta 3 validation results for constant speed ratio 0.5	57
Figure 5-13. Beta 1 validation results for constant speed ratio 0.5	61
Figure 5-14. Beta 2 validation results for constant speed ratio 0.5	61
Figure 5-15. Beta 3 validation results for constant speed ratio 0.5	62
Figure 5-16. Error analysis for variable speed at 1.25 inch bypass	63

Figure 5-17. Error analysis for variable diameter at 0.67 speed ratio	63
Figure 5-18. Validation results for flow inside the bypass 3 inch	64
Figure 5-19. Validation results for flow inside the bypass 2.5 inch	64
Figure 5-20. Validation results for flow inside the bypass 2 inch	65
Figure 5-21. Validation results for flow inside the bypass 1.5 inch	65
Figure 5-22. Validation results for flow inside the bypass 1.25 inch	66
Figure 5-23. Validation results for flow inside the bypass 0.75 inch	66
Figure 5-24. Actual velocities inside the bypass of the 0.75 inch	67
Figure 6-1. The flow across the bypass with the flow in the secondary loop	69
Figure 6-2 The effect of increasing the pressure drop on the primary pump	71
Figure 6-3. The effect on the bypass average flow velocity in variable pipe diameters	72
Figure 6-4. The speed in the bypass at 80% load with varying bypass diameters	73
Figure 6-5. Speed in the bypass experimentally with varying bypass diameters and load	74
Figure 6-6. Valves openings with varying bypass diameters	76
Figure 6-7. The effect of changing the bypass diameter on the pumping power	77
Figure 6-8. Pressure drop at 20 inch bypass diameter	80
Figure 6-9. Secondary pump speed ratio with different bypass diameter	80
Figure 6-10. Pressure drop at 4 inch bypass diameter	81
Figure 7-1. The effect on the volume flow rate in the bypass with changing the primary pump	os
operation set points	84
Figure 7-2. The pressure drop inside the bypass for different secondary pumps sequencing	
strategies	85
Figure 7-3. The secondary pump ratio speed with different control schemes	87
Figure 7-4. Pressure drop across the bypass with constant speed ratio	88
Figure 7-5. Pressure drop across the load with constant speed ratio	89
Figure 7-6. Pressure drop across the bypass for different speed ratios	90
Figure 7-7. Pressure drop across the load for different speed ratios	90
Figure 7-8. Pressure drop across the load with different load variation and speed	91

List of Tables

Table 3-1. K values for elbows	22
Table 4-1. Curve fitting constants for pumps	35
Table 4-2. Pipeline design table	38
Table 5-1. Validation Results for 3 inch Bypass	50
Table 5-2. Validation Results for 2.5 inch Bypass	52
Table 5-3. Validation Results for 2 inch Bypass	52
Table 5-4. Validation Results for 1.5 inch Bypass	53
Table 5-5. Validation Results for 1.25 inch Bypass	53
Table 5-6. Validation Results for 0.75 inch Bypass	54
Table 5-7. Validation Results for a constant speed ratio 1	56
Table 5-8. Validation Results for a constant speed ratio 0.92	58
Table 5-9. Validation Results for a constant speed ratio 0.83	58
Table 5-10. Validation Results for a constant speed ratio 0.75	59
Table 5-11. Validation Results for a constant speed ratio 0.67	59
Table 5-12. Validation Results for a constant speed ratio 0.58	60
Table 5-13. Validation Results for a constant speed ratio 0.5	60
Table 6-1. Data showing bypass impact on valves openings	75
Table 7-1. Flow in each branch corresponding to different valves openings	92

Nomenclature

h	Pressure head	m
f	Friction factor	-
Q	Volume flow rate	m3/s
V	Average flow velocity	m/s
1	Pipe length	m
D	Pipe diameter	m
K	Resistance coefficient	-
V	Volume	m3
g	Gravitational acceleration	m/s2
N	Rotational speed	RPM
P	Pressure	Pa
Re	Reynold's number	-
RR	Relative Roughness	_
	Relative Roughness	_
r	Speed ratio	_
		- S

Greek letters

β	Valve opening	-
ε	Roughness	m
ϑ	Kinematic viscosity	m2/s
ρ	Density	kg/m3
Δ	Difference	-

Subscripts and Superscripts

pc	Primary circuit
sc	Secondary circuit
pp	Primary pump
sp	Secondary pump
bp	Bypass
Sec	Secondary
Prim	Primary
Load	Load terminal

Chapter 1 Introduction

1.1 Systems Overview:

Chilled water system is one of the most used types in central air conditioning. Often used in Egypt and Arabian Gulf countries, typically the system circulates water through a pipe network, where the water chills down at the chiller, usually to around 6 degrees Celsius. The chilled water is pumped to the load terminals, whether the load terminal is a fan coil unit, an air handling unit, or a heat exchanger. At the load terminal the flow is throttled to sustain the required water volume flow rate, conventionally by using a thermostat and a control valve in order to maintain water ΔT at the terminal within design limits. Due to this cooling operation heat is exchanged from the load to the water increasing the water temperature. Water is circulated back to the chiller in order to chill down again and the loop goes on. Many system configurations had been developed recently to achieve this operation of this system with the least energy consumption. Where there are no changes in the chiller or load terminals, variations are limited to the pumping system, pipping network, valves and sensors locations. Originally, pumps are the heart of any chilled water system as their role in the system is mandatory. There are several ways of pumping the water across the piping network; the three most common used configurations are:

1) The constant flow pumping system shown in figure 1-1, this system is simply a set of constant speed pumps circulating a constant flow across the network. This pumping system has proven its durability, reliability and performance over the years. However, this compromises its simplicity with the high energy consumption at the part load conditions.