Role of PET/CT in initial evaluation & follow up of thoracic lymphoma

Essay

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Jane Samaan Mikhael Samaan

M.B.,B.Ch.

Supervised by

Prof. Dr .Maha Abdel Meguid El-Shinnawy

Professor of Radiodiagnosis
Faculty of Medicine-Ain Shams University

Dr.Mohamed Gamal El Din Abd El Mutaleb

Lecturer of Radiodiagnosis
Faculty of medicine-Ain Shams University
Faculty of Medicine
Ain-Shams University

Acknowledgment

First of all I want to give thanks to **GOD** who is always with me especially in this step of my life, I felt how he plans everything so perfectly and I always pray to follow his will & use my work to raise his name up. Thank you **GOD** so much.

In addition, I want to express the great honor of working under the supervision of **Prof. Dr. Maha Abdel Meguid El-Shenawy**, Professor of Radiodiagnosis, Faculty of medicine, Ain Shams University. She has given me guidance, advice and support in every way she can during the course of this work. I can't thank her enough for her unlimited support & understanding. Really, I appreciate being under her supervision during this work & I am proud to be a student of her as I learnt from her not only scientific lessons but also ethical lessons as she was so decent with me in everything. Thank you my dear doctor.

Then, I want to thank **Dr. Mohamed Gamal El Din Abd El Mutaleb**, Lecturer of Radiodiagnosis, Faculty of medicine, Ain Shams University. His sincere remarks were so useful & scientific that helped me a lot during my work. Thank you dear doctor.

Moreover, I can never forget the love, help, support, effort & prayers of my Father, my Father Abouna, my Mother, my Brother & my Sister who are always with me in every step in my life & I hope that I can always make them proud of me. I love you & I ask GOD to keep you safe for me.

Contents

List of abbreviations	i
List of tables	ii
List of figures	iii
Introduction	1
Anatomy of the Thorax	4
Pathology of Thoracic Lymphoma	29
Physical and technical consideration of PET-CT	52
The manifestations of 18F-FDG PET-CT in Thoracic Lymphoma	81
Summary and Conclusion	121
Abstract	125
References	129
Arabic summary	

List of abbreviations

Abb.	Full Name
AC	attenuation corrected
ALK	anaplastic lymphoma kinase
AV	atrioventricular
BL	burkitt lymphoma
CD	cluster of differentiation
CHL	Classic Hodgkin lymphoma
CNS	Central nervous system
CT	computed tomography
DLBCL	Diffuse large B cell Lymphoma
EBV	Ebstein- Bar virus
FDG	Fluoro-deoxy-ribo-glucose
GI	gastrointestinal
GLUT	glucose transporter
GU	genitourinary
HD	Hodgkin disease
HHV8	human herpes virus 8
HIV	Human immune deficiency virus
HL	Hodgkin Lymphoma
IPI	international prognostic index
MALT	Mucosa associated lymphoid tissue
MIP	Maximum intensity projection
NAC	Non attenuation corrected
NHL	Non Hodgkin Lymphoma
NK	natural killer cells
NLPHL	Nodular lymphocyte predominant Hodgkin lymphoma
NSCHL	Nodular sclerosis classical Hodgkin lymphoma
PET/CT	positron emission tomography/ computed tomography
PET	positron emission tomography
RS	Reed-Sternberg cells
SVC	superior vena cava
T8	thoracic vertebra number 8
T12	thoracic vertebra number 12
WHO	World health organization

List of Tables

Table no.	Title	page
20000		• 0
Table 1	The 2008 WHO classification of NHL	32
Table 2	Feature of major categories of Hodgkin's Lymphoma	42
Table 3	Common and Uncommon Manifestations of Hodgkin's Lymphoma	43
Table 4	Ann Arbor Staging Classification for HD	50
Table 5	Cotswold-modified Ann Arbor classification	51
Table 6	F-18-FDG Uptake in Various histological subtypes of NHL and Hodgkin Disease	85
Table 7	Malignancy Grade and Type of Lymphoma at FDG PET	86

List of Figures

Figure no.	Title	Page
Figure 1	Lung segments	5
Figure 2	Pleural fissures	6
Figure 3	Diagrams of pleural reflections	7
Figure 4	Diagram showing the divisions of the mediastinum	8
Figure 5	Axillary Lymph Nodes	10
Figure 6	Mediastinal lymph nodes mapping	14
Figure 7	Diaphragmatic aperatures	16
Figure 8	Muscles of the trunk	20
Figure 9	The heart	21
Figure 10-29	Normal CT anatomy of chest,axial reconstructions(mediastinal window)	22-26
Figure 30-31	Normal CT anatomy of chest, sagittal reconstructions (pulmonary window)	27
Figure 32-33	Normal CT anatomy of chest, coronal reconstructions (pulmonary window)	27
Figure 34-37	Normal CT anatomy of chest, axial reconstructions (pulmonary window)	28
Figure 38	Positron Decay	53
Figure 39	Positron range and annihilation angle blurring	54
Figure 40	Coincidence detection	56
Figure 41	Two-dimensional and three dimensional imaging	57
Figure 42	Attenuation and non attenuation corrected images	59
Figure 43	Schematic structure of FDG	61
Figure 44	Schematic illustration of FDG uptake	62
Figure 45	Illustrative diagram of combined PET/CT scanner components	64

Figure 46	PET/CT scanner	64
Figure 47	Typical imaging protocol for combined PET/CT	65
Figure 48	Misregistration artifacts in head and neck	71
Figure 49	Misregistration artifacts in lung/ diaphragm interface	72
Figure 50	Attenuation correction artifacts due to oral contrast agents:	73
Figure 51	Attenuation correction artifacts due to IV contrast	73
Figure 52	Attenuation correction artifacts due to metallic prosthesis	74
Figure 53	PET/CT for staging of Hodgkin's lymphoma	82
Figure 54	Hodgkin's lymphoma	82
Figure 55	A 12 year old male with pathologically proven HL	83
Figure 56	Axial CT, PET, and PET-CT images showing increased FDG uptake	84
Figure 57	Trans-axial images of the PET-CT show a large anterior mediastinal mass.	87
Figure 58	64-year-old man with refractory cutaneous T-cell lymphoma.	89
Figure 59	No increased FDG uptake at early evaluation in a 21-year-old man with Hodgkin disease	90
Figure 60	Therapy evaluation by PET/CT in a case of lymphoma	91
Figure 61	Residual mass with FDG uptake in a 76-year-old woman with non-Hodgkin lymphoma	93
Figure 62	Non-Hodgkin's lymphoma	93
Figure 63	Hodgkin disease with lung and mediastinal involvement.	96

Figure 64	38-year-old male with a history of NHL status post completion of chemotherapy.	97
Figure 65	Fused PET-MIP image showing a large subcutaneous ulcerating soft tissue mass lesion abutting the left chest wall	98
Figure 66	A whole-body, baseline, FDG-PET scan	99
Figure 67	18-F-FDG PET/CT images in transverse (left), coronal (middle) and sagittal (right) views show right mediastinal pleural increased FDG uptake	101
Figure 68	Thymic rebound in a 25-year-old woman with a history of Hodgkin disease	103
Figure 69	Thymic uptake in a 23-year-old woman with a history of Hodgkin disease	104
Figure 70	Hypermetabolic brown	105
Figure 71	Bone marrow activation	107
Figure 72	A 23-year-old man with Hodgkin's lymphoma	110
Figure 73 a-g	shows a case of A 69 years old male with pathologically proven NHL before & after treatment.	111-112
Figure 74 a-d	shows a case of A 39 years old female with pathologically proven NHL with pleural spread	113-114
Figure 75 a-d	shows a case of A 20 years old male with pathologically proven Hodgkin's Lymphoma	115-116
Figure 76 a-g	shows a case of A 26 years old female with pathologically proven NHL with pleural spread	117-118
Figure 77 a-e	shows a case of A 33 years old male with pathologically proven Hodgkin's Lymphoma with complete metabolic response	119-120

Introduction

Introduction

Malignant lymphoma which accounts the most common hematological malignancy, it accounts for approximately 8% of all malignancies (*Okada et al, 2010*).

Hodgkin lymphoma accounts for less than 1% of all cases of cancer, while Non- Hodgkin lymphoma accounts for about 5% of all cases of cancer. Most causes of lymphoma are unknown; there are recognized associations and risk factors. Slightly more men than women are affected, and incidence is higher in the white population. B-cell lymphomas are more common in adults and T-cell lymphomas are more common in children

(Workman & Coleman, 2006).

Patients with a diagnosis of malignant lymphoma are subjected to a series of radiologic studies that include chest radiography, intravenous pyelography, lymphangiography, skeletal surveys, and isotope scans (*Kwee et. al.*, 2008).

The limitations of anatomical imaging include the inability to determine if a mass is benign or malignant or to determine whether a residual or recurrent abnormality is present after treatment (*Antoch et al*, 2002).

Interpreting a PET/CT study is done by comparing PET and CT data, viewing fused PET/CT images and of course their correlation with clinical history. PET study is displayed as maximum intensity projection (MIP), non-attenuation corrected (NAC), and attenuation corrected (AC) images. CT images are viewed in different windows (soft tissue, bone and lung) and different reconstruction planes (axial, sagittal and coronal) (*Lin and Alavi, 2009*).

Positron emission tomography (PET) is a molecular imaging technique most widely applied in oncology, using 18F labeled fluorodeoxyglucose (18F-FDG). It provides quantitative and qualitative functional information about tumor cells depending on their increased rate of glucose metabolism. 18F-FDG PET is regarded to be effective in the detection, staging and restaging of malignancies with a remarkable high sensitivity. The combination of PET and computed tomography (CT) represents a very unique imaging modality that scans the whole body in the same session, providing functional and anatomic information in co-registered images. It combines the high sensitivity of PET to the superior anatomical localization by CT resulting in much more accurate detection and staging of malignancies (*Poeppel et al*, *2009*).

Several studies had illustrated the additional value of PET/CT scan compared to various imaging modalities in the accurate initial staging of malignancies. Specifically in the detection of distant metastases, M staging, PET/CT scan is able to identify invisible metastatic lesions not yet developing into structural changes. Thereby, a significant change in the management plan might be done, for example skipping unnecessary surgery to be replaced by palliative therapy (*Wang et al, 2012*).

Aim of Work

The aim of work is to highlight the role of PET-CT in the initial assessment of the extent of nodal and extra-nodal thoracic Lymphoma at initial presentation, and to investigate the use of PET-CT as a periodic screening tool for assessment of treatment response particularly in cases where the pathological nodes or mass lesions are still visible radiographically yet with indeterminate functional or metabolic status.

Anatomy of the Thorax

Anatomy of the thorax

I-LUNGS:

The two lungs are similar; they are not completely symmetrical, having a different number of lobes and a different bronchial and vascular anatomy (*Webb et al.*, 2009).

The left lung: is subdivided into two lobes and thereby, into eight segments(fig.1):

- Left upper lobe: Left upper lobe proper: apicoposterior, anterior segments.
- Lingula: superior lingular, inferior lingular segments.
- Left lower lobe: superior segment or apical segment, and inferior segment or basal segment, which is further subdivided into: anteromedial segment, lateral segment, and posterior segment (*Webb et al.*, 2009).

The right lung is subdivided into three lobes with ten segments (fig. 1):

- Right upper lobe: apical segment, anterior segment, and posterior segment.
- Right middle lobe: medial segment, and lateral segment.
- Right lower lobe: superior segment or apical segment, and inferior segment or basal which further subdivided into: anterior segment, medial segment, lateral segment, & posterior segment (Webb et al., 2009).

Lung Fissures: Lung fissures (fig. 2, 3) are a double-fold of visceral pleura that either completely or incompletely invaginate lung parenchyma to form the lung lobes. Each lung has an oblique fissure separating the upper lobes from the lower lobes and the right lung has a horizontal fissure that separates the right upper lobe from the right middle lobe (*Hayashi et al.*,2001).

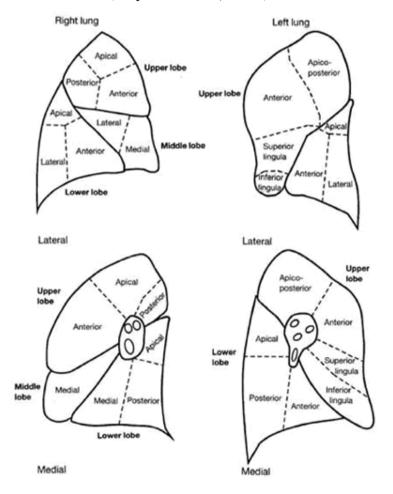


Fig. 1: Lung segments (Quoted from Webb et al., 2009).