EVALUATION OF PRODUCING WATERMELON USING DIFFERENT SOILLESS CULTURE SYSTEMS UNDER PROTECTED CULTVATION

Submitted By

Latifa Ahmed Ismail Attia

B.Sc. of Agricultural Sciences, Institute for Agricultural Cooperation , 2002
 Diploma of Environmental Sciences, Institute of Environmental
 Studies &Research Ain Shams University 2007

A thesis submitted in partial fulfillment

Of

The requirements for the Master Degree

In

Environmental Science

Department of Environmental Agricultural Science Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET EVALUATION OF PRODUCING WATERMELON USING DIFFERENT SOILLESS CULTURE SYSTEMS UNDER PROTECTED CULTVATION

Submitted By Latifa Ahmed Ismail Attia

B.Sc. of Agricultural Sciences, Institute for Agricultural Cooperation, 2002 Diploma of Environmental Sciences, Institute of Environmental Studies & Research Ain Shams University 2007

This Thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Sayed Mahmed Singer

Emeritus Research Prof of Vegetable Crops National Research Center

2- Dr. Khaled Fran El-Bagoury

Associate Prof of Agricultural Engineering Faculty of Agriculture Ain Shams University

3-Prof.Dr.Usama Ahmed El-Behairy

Prof. of Vegetable Crops Faculty of Agriculture Ain Shams University

EVALUATION OF PRODUCING WATERMELON USING DIFFERENT SOILLESS CULTURE SYSTEMS UNDER PROTECTED CULTVATION

Submitted By Latifa Ahmed Ismail Attia

B.Sc. of Agricultural Sciences ,Institute for Agricultural Cooperation , 2002 Diploma of Environmental Sciences, Institute of Environmental Studies &Research Ain Shams University 2007

A Thesis Submitted in Partial Fulfillment of the requirement for the Master Degree

In

Environmental Science Department of Environmental Agricultural Science

Under the supervision of:

1- Prof. Dr. Usama Ahmed Aly El-Behairy

Prof. of Vegetable Crops Faculty of Agriculture Ain Shams University

2- Dr. Zaki El-Sawy Lashin

Associate Prof. of Vegetable Crops Faculty of Agriculture Ain Shams University

3- Dr. Mahmoud Zaky El-Attar

Lecturer, of Agricultural Engineering Agriculture Faculty of Agricultural Ain Shams University

تقيم انتاج البطيح باستحدام نظم محتلفة من الزراعة بدون تربة تحبه طروف الزراعة المحمية

رسالة مقدمة من الطالبة

لطيفة احمد اسماعيل عطية

بكالوريوس العلوم الزراعية - المعهد العالى للتعاون الزراعى - ٢٠٠٢ دبلوم في العلوم البيئية - معهد الدراسات والبحوث البيئية - جامعة عين شمس -٢٠٠٧

لاستكمال متطلبات الحصول على درجة الماجستير في العلوم البيئية

قسم العلوم الزراعية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

صفحة الموافقة على الرسالة

تقيم انتاج البطيخ باستخدام نظم مختلفة من الزراعة بدون تربة تحبير طروف الزراعة المحمية

رسالة مقدمة من لطيفة احمد اسماعيل عطية

بكالوريوس العلوم الزراعية- المعهد العالى للتعاون الزراعى - 2002 دبلوم في العلوم البيئية- معهد الدراسات والبحوث البيئية- جامعة عين شمس-٢٠٠٧

لاستكمال متطلبات الحصول على درجة الماجستير

فى العلوم البيئية قسم العلوم الزراعية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

۱.د/ سيد محمود سنجر
 أستاذ باحث الخضر المتفرغ
 المركز القومي للبحوث الزراعية

۲- د. / خالد فران الباجورى
 استاذ مساعد قسم هندسة زراعية كلية الزراعة
 جامعة عين شمس

۳- ا. د/ اسامة احمد على البحيرى أستاذ الخضر كلية الزراعة جامعة عين شمس

تقيم انتاج البطيخ باستخدام نظم مختلفة من الزراعة بدون تربة تحت طروف الزراعة المحمية

رسالة مقدمة من الطالبة لطيفة احمد اسماعيل عطية

بكالوريوس العلوم الزراعية – المعهد العالى للتعاون زراعى - ٢٠٠٢ دبلوم في العلوم البيئية - معهد الدراسات والبحوث البيئية - جامعة عين شمس - ٢٠٠٧

لاستكمال متطلبات الحصول على درجة الماجستير في العلوم البيئية قسم العلوم الزراعية البيئية

تحت الإشراف:

۱-۱. د / أسامة أحمد على البحيرى أستاذ الخضر - كلية الزراعة جامعة عين شمس

۲- د. / زكى الصاوى لاشين
 أستاذ الخضر المساعد - كلية الزراعة
 جامعة عين شمس

٣- د./ محمود زكى العطار
 مدرس بقسم الهندسة الزراعية – كلية الزراعة
 جامعة عين شمس

ختم الاجازة أجيزت الرسالة بتاريخ / / 2015

موافقة مجلس الجامعة / / 2015 موافقة مجلس المعهد / / 2015

ACKNOWLEDGEMENT

Praise and thanks to Allah, who guided and helped us to achieve this work.

I wish to express great thanks and deep gratitude to **prof. Dr. Usama Ahmed El-Behairy**, Prof. of Vegetable Crops: Facuity of Agriculture, Ain Shams University, for suggesting the current stud, supervision and help during the course of this study and during preparing and reviewing of this manuscript.

Thanks are also late **prof. Dr. Zaki El-Sawy Lasheen,** Associate prof. of Vegetable Crops , Faculty of Agriculture, Ain Shams University, for their supervision during his life (Ask ALLAH to him kindness and forgive him).

I would like to thank **Dr. Mahmoud Zaky El-Attar**, Lecturer of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. for his kind supervision, advice, valuable assistance, during the preparation of this thesis.

Deepest and sincere gratitude and appreciation to Prof. Dr. Nazmi Abdul Hamid Abdul Ghani (Dean of the Faculty of Agriculture, Ain Shams University), for valuable assistance, moral and faithful attitude during the preparation of this manuscript.

Sincere and deep gratitude to Prof. Dr. **Hisham Ibrahim El-Qasas**, (Dean of Institute of Environmental), encouragement, and valuable helping throughout this study.

I would like to thank also extends thanks to **Dr. Abdul Rahman Al Anani** Lecturer Filed Crops production, Faculty of Agriculture, Ain Shams University. For his valuable help and Kind review as well as preparation of this manuscript.

Also wish to express his gratitude and sincere thanks to **Prof. Dr. Mohamed El_Shinawy,** Professor of Vegetable Crops, Faculty of Agriculture, Ain Shams University, for his kind help, follow up and constructive ideas and advice.

I would like to thank **Dr. Hany Gamal Metwally**, Lecturer of Vegetable Crops, Faculty of Agriculture, Ain Shams University for his encouragement, support, and valuable helping throughout this study.

My deepest sincere thanks to my son **Mostafa** for his valuable help through this study.

My grateful thanks to all staff members of Arid Land Agricultural Graduate Studies for their kind help and facilities granted during this work.

Finally, my deepest gratitude to my family for the continued assistance and encouragement through this work. This work has never been done without the way I got raised by the teacher, the guide, the kind **Dr. Ahmad Mohamed Eissa** (my husband) May ALLAH bless him on his soul and forgive him.

ABSTRACT

Experiment were carried out during two successive seasons of 2010 and 2011 under unheated plastic house, at the experimental farm, of Arid Land Agricultural Graduate Studies and Research Institute, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Egypt, in order to evaluate of producing watermelon using different soilless culture systems on the growth, yiald and fruit quality of two watermelon cultivars (Sakata and Q2623). Seedlings were transplanted in 20 January 2010 and 30 January 2011. The experimental treatments included four soilless culture systems: peatmoss + sand (1:1), peatmoss + perlite (1:1), peatmoss + vermiculite (1:1) and NFT system comparing with soil cultivation (control) (Sakata and Q2623).

Treatments were arranged in a split plot design where the soilless culture systems where arranged in the main plot and the cultivars where distributed in the sub-plot with three replicates.

Regarding the cultivation systems, the obtained results indicated that the highest plant growth (plant length, number of leaves and leaf area) was obtained by using soilless culture systems. While the lowest growth was obtained using soil cultivation. The highest total yield was obtained using peatmoss + vermiculite mix and NFT system comparing the other soilless culture systems.

Concerning the fruit quality, data showed that peatmoss + vermiculite system gave the highest value of average fruit weight, TSS and flesh thickness while the lowest values were obtained by soil plantation. The highest percentage of nitrogen was obtained by peatmoss + vermiculite sestem with Sakata, while the lowest percentage in the first season was detected using soil. The highest percentage of phosphorus and potassium was obtained using peatmoss + sand mix while the lowest percentage was found in soil caltivation. On the contrary, the highest

percentage of calcium was obtained using soil while the lowest was detected using perlite mix. data showed that using NFT recorded the highest water use efficiency comparing with control in both seasons.

Regarding the cultivars, data illustrated that no significant difference were detected between the two cultivars for growth and fruit quality characters.

Regarding the interaction between the soilless culture techniques and watermelon cultivars, the highest vegetative growth and total yield recorded by vermiculite system in both seasons with both cultivar. The best interaction was detected between Q2326 cultivar with NFT in the first season and the same with Sakata in the second season.

Key words: Watermelon, Soilless Culture, Nutrient Film Technique (NFT), Substrate Culture, Perilte, Peatmoss + vermiculite culture.

CONTENTS

		Page
	List of Tables	IV
	List of Figures	VII
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	Vegetative growth	4
2.2.	Leaf mineral content	8
2.3.	Yield and its components	9
2.4.	Fruit quality	14
3.	MATERIALS AND METHODS	22
3.1.	The experimental layout	22
3.2.	Nutrient Film Technique (NFT)	22
3.3.	Substrate culture	23
3.4.	Treatments	23
3.5.	Watermelon varieties	24
3.6.	The nutrient solution	24
3.7.	Studied characteristics	25
3.7.1.	Vegetative characteristics	25
3.7.2.	Plant length	25
3.7.3.	Number of leaves	25
3.7.4.	Leaf chlorophyll	25
3.7.5.	Leaf area per plant	25
3.8.	Mineral analysis	25
3.9.	Fruit yield	26
3.9.1.	The average fruit weight	26
3.9. 2.	Total yield per plant	26
3.9. 3.	fruit weigh/m²	26
3.10.	Fruit quality	26
3.10.1.	Flesh thickness	26
3.10. 2.	Total soluble solids	26
3.11.	Water measurements	26
3.12.	Statistical analysis	26
4.	RESULTS AND DISCUSSION	29
4.1.	Vegetative growth	29

		Page
4.1.1.	Plant length	29
4.1.2.	Number of leaves	30
4.1.3.	Leaf Chlorophyll content	32
4.1.4.	leaf area	33
4.1.5.	Flesh thickness	34
4.1.6.	Total soluble solids	35
4.2.	Fruit quality	36
4.2.1.	Physical properties	36
4.2.2.	Average fruit weight	36
4.2.3.	Total yield /per plant	37
4.3.	Chemical properties	38
4.3.1	Nitrogen of leaves	36
4.3.2.	Phosphors of leaves	39
4.3.3	Potassium	40
4.3.4.	Sodium	41
4.3.5.	Calcium	42
4.3.6.	Magnesium	42
4.3.7.	Irons	43
4.3.8.	Zinc	44
4.3.9.	Manganese	45
4.3.10	Copper	45
4.4.	Water consumption in liters per plant	46
4.5.	Water use efficiency	47
4.6.	fruit weigh / m ²	48
5.	SUMMRY AND CONCLUSION	50
6.	REFERENCES	54
7.	APPENDIX	67
8.	ARABIC SUMMARY	

LIST OF TABLES

		Page
Table (1)	Mechanical and chemical analysis of a sample	
	of the experimental soil	25
Table (2)	Effects of different soilless culture	
	techniques and watermelon on cultivars plant	30
	height after 60 and 90 days from transplanting	
Table (3)	Effects of different soilless techniques and	
	watermelon cultivars on. of leaves after 60 and	31
	90 days from transplanting	
Table (4)	Effects of different soilless techniques and	
	watermelon cultivars on chlorophyll and leaf	33
	area in both season	
Table (5)	Effects of different soilless techniques on	
	watermelon hull thickness and TSS after 60	
	days from transplanting	34
Table (6)	Effects of different soilless techniques and	
	watermelon cultivars on average fruit weight	
	and fruit weigh/plant in both seasons	46
Table (7)	Effects of different soilless techniques and	
	watermelon cultivars on N and P in the leaves	
	after 60 days from transplanting	38
Table (8)	Effects of different soilless techniques and	
	watermelon cultivars on K and Na of in the	
	leaves after 60 days from transplanting	39
Table (9)	Effects of different soilless techniques and	
	watermelon cultivars on Ca and Mg in the	
	leaves after 60 days from transplanting	40
Table (10)	Effects of different soilless techniques and	
	watermelon cultivars on Fe and Zn in the leaves	41
	after 60 days transplanting	

		Page
Table (11)	Effects of different soilless techniques and watermelon cultivars on Mn and Cu leaves after	
	60 days from transplanting	42
Table (12)	Effects of different soilless techniques and	
	watermelon cultivars on water consumption /	
	plant and WUE from transplanting	44
Table (13)	Effects of different soilless techniques and	
	watermelon cultivars on watermelon Fruit	45
	weight /m²(kg) in both seasons.	

LIST OF FIGURE

		Page
Figure 1	Schematic model of treatment	27
Figure 2	Seedlings stage cultivation	28
Figure 3	Soilless techniques preparation	28
Figure 4	Flowering Stage	28
Figure 5	Stage holding fruit	28