Platelet Count/Splenic Diameter Ratio: A Non Invasive Method for Diagnosis of Oesophageal Varices in Cirrhotic Patients

Thesis

Submitted for partial fulfillment of master degree in Internal Medicine

By

Ahmed Mahmoud Gad El-Rab

M.B.,B.Ch

Under Supervision of

Prof. Dr. Maryse Soliman Ayoub

Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Assist. Prof. Dr. Hany Mohamed Abdullah Hegab

Assistant Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Assist. Prof. Dr. Walaa Ali ElSalakawy

Assistant Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2015

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Maryse Soliman Ayoub,** Professor of Internal Medicine and Hematology, Faculty of Medicine – Ain Shams University, for her constructive criticism, unlimited help and giving me the privilege to work under her supervision.

My most sincere gratitude is also extended to **Assistant Assist. Prof. Dr. Hany Mohamed Abdullah Hegab,** Assistant Professor of Internal Medicine and Hematology, Faculty of Medicine – Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work.

Words fail to express my appreciation to Assist. Prof. Dr. Walaa Ali ElSalakawy, Assistant Professor of Internal Medicine and Hematology, Faculty of Medicine – Ain Shams University, for her enthusiastic help, continuous supervision, guidance and support throughout this work.

I can't forget to thank our patients who participated

Last but not least, all thanks to the members of my Family, especially my Parents and my Wife for pushing me forward in every step in the journey of my life.

Candidate

Ahmed Mahmoud Gad

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
- Liver Cirrhosis	5
- Portal Hypertension	27
- Thrombocytopenia	72
Patients and Methods	87
Results	93
Discussion	116
Summary and Conclusion	124
Recommendations	126
Arabic Summary	

List of Abbreviations

Abbr. Full-term **AFP** : Alfa Feto Protein **ALP** : Alkaline phosphatase ALT : Alanine transaminase **AST** : Aspartate transaminase AST : Aspartate transaminase **AUROC** : Area under rock curve **CBC** : Complete blood count **CPT** : Child-Pugh-Turcotte CT : Computed tomography : Disseminated intravascular coagulation DIC EV : Esophageal varices : Endoscopic variceal band ligation **EVBL HCV** : Hepatitis C virus **HCV** : Hepatitis C virus **IFN** : Interferon **INR** : International normalized ratio **ITP** : Idiopathic thrombocytopenic purpura **IVC** : Inferior vena cava LEV : Large varices : Model for End-Stage Liver Disease **MELD MR** : Magnetic resonant : Nonalcoholic fatty lives disease **NAFLD** NO : Nitric oxide : Negative predictive value **NPV OPSI** : Overwhelming post-splenectomy infection

List of Abbreviations (Cont.)

Abbr. Full-term

OV : Oesophageal varices

PLT : Platelet

PLT/SD: Platelet Count/Spleen Diameter

PPV : Positive predictive value

PSE : Partial splenic embolization

PSVT : Portal and splenic vein that thrombosis (PSVT)

ROC : Receiver operating characteristic

SD : Standard deviation

SPSS : Statistical Program for Social Science

SV : Splenic vein

TE : Transient elastography

TIPS : Transjugular intrahepatic portosystemic shunt

UGIE : Upper gastrointestinal endoscopyUS : Ultrasonography or ultrasound

VEGF : Vascular endothelial growth factor

List of Tables

Eable No.	Citle	Page No.
Table (1):	Child–Pugh classification of sever liver disease	-
Table (2):	Child-pugh classification relation patient survival percentage	
Table (3):	West Haven Criteria Grading Syst Hepatic Encephalopathy	
Table (4):	Summary of diagnostic accuracy of stiffness for the detection of esoph varices (EV) or large varices (LEV)	ageal
Table (5):	Primary prophylaxis and surveillar EV	
Table (6):	Initial medical management of acutariceal bleeding.	
Table (7):	Child-Pugh-Turcotte (CPT) classific the severity of cirrhosis	
Table (8):	Demographic data of the study gro	oup 94
Table (9):	Description of different Causes of cirrhosis among study group	
Table (10):	Liver profile data among study gro	oup 96
Table (11):	Occurance of encephalopathy amostudy group.	•
Table (12):	Presence of Ascites among study g	group98
Table (13):	Complete blood count finding amostudy group.	•
Table (14):	Presence of E.V among study grou	ıp 100

List of Tables (Cont.)

Eable No.	Citle	Page No.
Table (15):	Description of UGIE grades of E. amonf study group.	
Table (16):	Child paugh classes among study	group 102
Table (17):	Comparison between patient with of encephalopathy and those with regarding grades of varices	out
Table (18):	Comparison between ascitic and nascitic patients regarding grades of varices.	f
Table (19):	Comparison of UGIE grades of variregarding to child paugh class	
Table (20):	Correlation between UGIE finding of varices (yes/no) and both platelet co spleen diameter	unt and
Table (21):	Correlation between causes of liver cirrhosis and grading of varices	111
Table (22):	Comparison between grading of var regard Liver profile	
Table (23):	Multivariate analysis between UGIE finding of varices (yes/no) as regard parameters.	other
Table (24):	Diagnostic Performance of PLT/SD Discrimination UGIE finding of var	

List of Figures

Figure No.	Citle	Page No.
Figure (1):	The anatomy of the portal venous sy	ystem 28
Figure (2):	The tributaries of the portal vein	29
Figure (3):	Esophageal varices (Gastrohep.com	37
Figure (4):	Description of sex among study gro	up94
Figure (5):	Description of different causes of li- cirrhosis among study group.	ver 95
Figure (6):	Description of occurance of encephalopathy among study group	97
Figure (7):	Presence of ascites among study gro	oup98
Figure (8):	Presence of E.V.among study group	100
Figure (9):	Grades of E.V.among study group	101
Figure (10):	Different Child paugh classes amon study group.	_
Figure (11):	Comparison between patients with lof encephalopathy& those without regarding to grades of varices	·
Figure (12):	Comparison between ascitic and not ascitic patients regarding variceal gr	
Figure (13):	Comparison of UGIE grades of vari regarding to child classes	
Figure (14):	Comparison of parameters regarding presence of varices.	

List of Figures (Cont.)

Figure No.	Citle	Page No
Figure (15):	Correlation of UGIE grades of v regarding to causes of liver cirhl	
Figure (16):	ROC curve diagnostic Performance PLT/SD, discrimination UGIE fit varices	nding of

Introduction

Firrhosis is the end stage of chronic liver disease, resulting in formation of fibrous tissue, disorganization of liver architecture, and nodule formation, which interferes with liver function and results in portal hypertension. Portal hypertension is associated with development of a hyperdynamic circulation and complications such as ascites, hepatic encephalopathy, and oesophago-gastric varices. Patients with cirrhosis and gastro-oesophageal varices have a portal venous pressure of at least 10–12mmHg (*Garcia-Tsao et al., 2007*).

Esophageal variceal bleeding remains the leading cause of acute mortality in patients with cirrhosis (*Chawla et al.*, 2012).

Oesophageal varices (OV) are present at diagnosis in approximately 50% of cirrhotic patients, being more common in Child-Pugh class C patients (*Merli et al.*, 2003).

Although mortality from a bleeding episode has decreased with improved endoscopic and radiological techniques together with new pharmacologic therapies, a 20–30% mortality means that bleeding from oesophageal varices remains of significant clinical importance. Early diagnosis of varices before the first bleed is essential as studies of primary prophylaxis clearly show that the risk of variceal

haemorrhage can be reduced by 50% to about 15% for large oesophageal varices (Rye et al., 2012).

According to current guidelines, all patients with cirrhosis should be screened for OV at the time of diagnosis. Endoscopy is the only validated method for diagnosis of OV (*Rye et al.*, 2012).

Repeated endoscopies cause a significant burden and cost to endoscopy units and expose patients to unnecessary procedures as up to 50% of patients may still not have developed oesophageal varices 10 years after the initial diagnosis (*Berzigotti et al.*, 2008).

However, in recent years, several non-invasive methods for detecting OV have been evaluated. These include clinical and biochemical parameters, ultrasonographic findings (*Giannini et al.*, 2006) transient elastography (*Vizzutti and Arena*, 2007) computed tomography (CT) scanning (*Perri et al.*, 2008) and video capsule endoscopy (*De Franchis et al.*, 2008).

Diagnosing OV by non-invasive methods could reduce the need of endoscopy only for patients with a high probability of having OV, thus avoiding unnecessary examinations. Amongst the non-invasive methods, the platelet count/spleen diameter ratio (platelet/spleen) has shown promising performance characteristics. A positive predictive value (PPV) of 96% and a negative predictive value (NPV) of 100% for the presence of OV have been reported using a cut-off value of 909 (*Giannini et al.*, 2003).

The same cut-off value has been validated in a multicentre study showing a PPV and NPV of 76.6% and 87%, respectively. Other studies have reported PPV and NPV values ranging from 71% to 96.9% and from 35.2% to 100% respectively, considering the same or different cut-off values (*Sarangapani et al.*, 2010).

Aim of the Work

To assess the diagnostic accuracy of Platelet count/splenic diameter ratio for identification and diagnosis of oesophageal varices in Patients with liver cirrhosis.

Liver Cirrhosis

Structure and Blood supply of the liver

The liver is the largest internal organ in the body and is situated in the right hypochondrium. Functionally, it is divided into right and left lobes by the middle hepatic vein. The right lobe is larger and contains the caudate and quadrate lobes. The liver is further subdivided into a total of eight segments by divisions of the right, middle and left hepatic veins. Each segment receives its own portal particle, permitting individual segment resection at surgery (*Kumar and Clark*, 2012).

The blood supply of the liver constitutes 25% of the resting cardiac output and is via two main vessels:

- * The hepatic artery, which is a branch of the coeliac axis, supplies 25% of total blood flow. Autoregulation of blood flow by the hepatic artery ensures a constant total liver blood flow.
- * The portal vein drains most of the gastrointestinal tract and the spleen. It supplies 75% of the blood flow.

Both vessels enter the liver via the hilum (porta hepatis).

The blood from these vessels is distributed to the segments and passes into the sinusoids via the portal tracts (*Davidson's*, 2014).