ACQUISITION, PROCESSING AND ANALYSIS OF ARCTIC SINGLE-SENSOR SEISMIC DATA FOR ATTENUATING SOURCE-GENERATED COHERENT NOISE

By
Usama Fathy Abdel Kader Mohamed
B.Sc. Ain Shams University, 2006

Submitted to the Faculty of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geophysics

A Thesis

Department of Geophysics
Faculty of Science
Ain Shams University
Cairo, Egypt

2010

APPROVAL PAGE

The undersigned certify that, they have read and recommended to the Faculty of Science for acceptance, a thesis entitled "Acquisition, Processing and Analysis of Arctic Single-sensor Seismic Data for Attenuating Source-generated Coherent Noise" submitted by Usama Fathy Abdel Kader in partial fulfillment of the requirements for the degree of Master of Science in Geophysics.

1. Prof. Dr. Hussein Mohamed Ali El Khashab

Professor of Geophysics, Faculty of Science – Sohag University.

2. Prof. Dr. Adel Ali Ali Othman

Professor of Geophysics, Faculty of Science – Al Azhar University.

3. Prof. Dr. Ahmed Sayed Ahmed Abu El-Ata

Professor of Geophysics, Faculty of Science – Ain Shams University.

4. Dr. Abdel Khalek Mahmoud Mohamed El-Werr

Assistant Professor of Geophysics, Faculty of Science – Ain Shams University.

Acquisition, Processing and Analysis of Arctic Singlesensor Seismic Data for Attenuating Source-generated Coherent Noise

By

Usama Fathy Abdel Kader Mohamed B.Sc. Ain Shams University, 2006

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geophysics

Under the supervision of:

1. Prof. Dr. Ahmed Sayed Ahmed Abu El-Ata

Professor of Geophysics, Faculty of Science – Ain Shams University.

2. Dr. Abdel Khalek Mahmoud Mohamed El-Werr

Assistant Professor of Geophysics, Faculty of Science – Ain Shams University.

3. Dr. Pieter Leonard Vermeer

Project Manager, R&D Department – WesternGeco.

ABSTRACT

Three component (3C) accelerometers (VectorSeis sensors), based on Micro-Electro Mechanical Systems (MEMS), and conventional one component (1C) geophones were used in acquiring data of an arctic field test (Northern Russia) to study the benefits of using 3C and 1C sensors.

The 1C data recorded with the VectorSeis sensors and the conventional geophones are similar and characterized by extreme lateral variations in the velocities and amplitudes of coherent noise. The datasets were processed to attenuate the noise, enhance coherency, resolve the statics problems and determine velocity models for stacking.

The terrain features of the test site show variability of the surface. With the opportunity of the MEMS sensors to measure the sensor tilt information, the analysis of the tilts is done and it shows that, there are large tilt angles for many sensors and that these angles are independent from the terrain features. The tilt of the sensors negatively affects data quality. It is expected that tilt correction will be beneficial.

The rotation of the sensors to the vertical is done to correct them for tilt and it shows improvement in data quality. It was found that the 3C rotation has greater impact than the 1C rotation. The 3C rotation enhances the P-wave events and reduces the S-wave and Rayleigh wave events on the vertical component. The stacks show the differences in the amplitude of the 1C and 3C rotation but the 3C difference has higher

amplitudes than the 1C difference. Also the 3C rotated stack shows improvement and enhancement in the resolution of the P-wave reflections in the vertical data.

The VectorSeis data (acceleration data) were converted numerically to be as if they were recorded with geophones (velocity data). The converted data became less noisy than the VectorSeis data and nearly similar to the geophone data. The converted stack section has more high frequency noise than the geophone stack section. The same conversion is applied to the stacked VectorSeis section. The produced post-stack converted stack section is similar, but slightly better than the pre-stack converted stack section.

ACKNOWLEDGEMENTS

First of all, I would like to thank God for his support to me to implement this work successfully. Then, I am thankful and indebted to many people, who provided assistance through the various phases of this thesis, even if I do not mention all of them here.

I wish to express my sincere thanks and gratitude to my supervisors. Prof. Ahmed Abu El-Ata, encouraged, challenged and guided me. Dr. Peter Vermeer, gave me access to his valuable experience and knowledge. Dr. Abdel Khalek El-Werr, provided helpful suggestions.

A lot of thank to the QAR (Q-Application Research) group in WesternGeco for their support, especially during the processing and analysis stages. Also, I thank my colleagues in the M.Sc. student internship, who enhanced my understanding of certain issues. I am also grateful to WesternGeco for the technical support in this research.

Finally, thanks to my family for support of an emotional nature. The quiet support of my wife encouraged me to surmount the more arduous obstacles. I hope to reward her for her patience and compensate for the family time we lost.

TABLE OF CONTENTS

APPRO	VAL PAGE	I
ABSTRA	ACT	III
ACKNO	WLEDGEMENTS	V
TABLE	OF CONTENTS	VI
LIST OF	TABLES	VIII
LIST OF	F FIGURES	IX
CHAPT	ER 1 INTRODUCTION	1
1.1	General	1
1.2	Literature Review	3
1.3	Area of Study	4
1.4	Technical Overview	8
1.4.	1 Geophone	8
1.4.	•	
1.5	Software Used	10
CHAPT	ER 2 PROCESSING OF THE DATA	11
2.1	Acquisition Geometry	11
2.2	Data Analysis	13
2.3	Data Processing	16
2.3.	1 Noise Attenuation	17
2.3.	2 Static Correction	23
2.3	3 Surface Consistent Predictive Deconvolution	25
2.3.	4 Surface Consistent Amplitude Compensation (SCAC)	28
2.3	5 Residual Static	30
2.4	Final Stacked Sections	31

СНАРТ	TER 3 ANALYSIS OF THE TILTED SENSORS34
3.1	General
3.2	Statistical Analysis
3.3	Correlation with Terrain40
3.4	Discussion
СНАРТ	TER 4 CORRECTION FOR THE TILT (SENSOR ROTATION) 46
4.1	General
4.2	Theory
4.3	Data Rotation
4.4	Discussion
СНАРТ	TER 5 ACCELEROMETER TO GEOPHONE CONVERSION 73
5.1	General
5.2	Theory
5.3	Geophone Conversion of the Data78
5.4	Geophone Conversion Post-stack 104
5.5	Discussion 108
SUMM	ARY AND CONCLUSIONS110
REFER	ENCES
APPEN	DIX A MATLAB CODE FOR THE ROTATION120
A DDEN	DIV R MATI AR CODE FOR THE CONVERSION 124

LIST OF TABLES

Table 3.1. The estimated statistic parameters of the tilt angles	35
Table 3.2. The percentage of the sensors that are tilted	38
Table 3.3. The estimated statistics of the tilt angles for each terrain	42

LIST OF FIGURES

Figure 1.1. Location map of the study area in Northern Russia
Figure 1.2. Near surface section in permafrost areas (Strobbia et al., 2009) 6
Figure 1.3. Asymmetric Lamb wave (up) and symmetric Lamb wave (bottom) 7
Figure 1.4. The elements of the geophone (Brincker et al., 2001)
Figure 1.5. Cross section of the MEMS accelerometer (Speller and Yu, 2004) . 9
Figure 2.1. Acquisition geometry, receiver line (blue) and source line (red) 11
Figure 2.2. The receiver (blue) and source (red) geometry
Figure 2.3. Two shot gathers off the lake (top) and on the lake (bottom) 13
Figure 2.4. The green frame in Figure 2.3 shows the extensional wave 14
Figure 2.5. Comparison of a raw shot gathers, in left, half of a record from the
VectorSeis. The same shot point from the geophone is shown in right with the
lateral coordinate reversed
Figure 2.6. The processing flow chart
Figure 2.7. The air waves in a shot gather as an inverted V shape
Figure 2.8 Shot gathers example for air wave modeling and subtraction 18
Figure 2.9. Shot gathers example for anomalous noise attenuation

Figure 2.10. F-K spectra for the noise attenuation
Figure 2.11. Shot gathers and total coherent noise
Figure 2.12. Stack sections without (top) and with (bottom) shot-domain f-k dip filter
Figure 2.13. The picking of the first break
Figure 2.14. Shot gathers before (top) and after (bottom) static correction 24
Figure 2.15. Stack sections without (top) and with (bottom) static correction 25
Figure 2.16. Shot gathers before (top) and after (bottom) deconvolution 26
Figure 2.17. Stack sections without (top) and with (bottom) deconvolution 27
Figure 2.18. Shot gathers before (left) and after (right) SCAC
Figure 2.19. Stack sections without (top) and with (bottom) SCAC
Figure 2.20. Stack sections without (top) and with (bottom) residual static 30
Figure 2.21. The amplitude spectra of the VectorSeis (left) and geophone (right) stacks
Figure 2.22. Final stacked sections of the VectorSeis (top) and geophone (bottom) data, 1000 ms AGC and 500 ms RNA applied
Figure 2.23. Amplitude spectra of the black rectangle in Figure 2.22
Figure 3.1. The histogram (red bars) and the fitted gamma distribution (blue
line) of the 574 tilt angles

Figure 3.2. Cumulative percentage distribution of the tilt angles
Figure 3.3. The amplitude error of the tilt angles
Figure 3.4. The mode leakage severity of the tilt angles
Figure 3.5. Cumulative percentage of the tilt angles with their effects
Figure 3.6. Elevation profile with terrain classification of the test site
Figure 3.7. Tilt angle along the spread
Figure 3.8. Tilt angle versus elevation
Figure 3.9. Tilt angle versus topographic slope
Figure 4.1. (a) MEMS 3C VectorSeis sensor (I-O Inc), and (b) Its three interior sensors (Maxwell et al., 2001)
Figure 4.2. P-, SV- and SH-waves recorded by 3C sensor
Figure 4.3. (a) VectorSeis vertical and horizontal sensors with measuring gravity (I-O Inc), and (b) Definition of the three tilt angles (Li et al., 2004) 49
Figure 4.4. Horizontal components before (top) and after (bottom) rotation 50
Figure 4.5. Shot gathers of the three component data
Figure 4.6. Common receiver gathers. Tilt angle 25°. 1C Rotation (top) and 3C Rotation (bottom) of the vertical data: (a) Raw, (b) Rotated, and (c) Difference

Figure 4.7. Raw with 1C Rotated (top) and 3C Rotated (bottom) near-offset
traces
Figure 4.8. Pre-rotated receiver gathers from a badly tilted sensor (the three tilt
angles are $\gamma=25^{\circ}$, $\alpha=72^{\circ}$ and $\beta=107^{\circ}$)
Figure 4.9. 3C rotated receiver gathers in Figure 4.8 (the three tilt angles
become $\gamma=0^{\circ}$, $\alpha=90^{\circ}$ and $\beta=90^{\circ}$)
Figure 4.10. The black rectangles on the Z-component in Figure 4.8 pre-rotated
(top) and Figure 4.9 3C rotated (bottom)
Figure 4.11. Raw and 3C rotated traces for (a) Z-, (b) X- and (c) Y-components
60
Figure 4.12. Processed receiver gathers of raw (top) and 3C rotated (bottom)
vertical data
Figure 4.13. Processed shot gathers of raw (top) and 3C rotated (bottom)
vertical data
Figure 4.14. A close-up of the shots in Figure 4.13, raw (left) and 3C rotated
(right)
Figure 4.15. Raw (top) and 1C rotated (bottom) stacks of the vertical data 64
Figure 4.16. Raw (top) and 3C rotated (bottom) stacks of the vertical data 65
Figure 4.17. Difference of raw and 1C rotated stacks in Figure 4.15 66
Figure 4.18. Difference of raw and 3C rotated stacks in Figure 4.16

Figure 4.19. 1C stacked section divided into 30 windows with RMS diff. values
(%)
Figure 4.20. 3C stacked section divided into 30 windows with RMS diff. values (%)
(70)
Figure 4.21. A close-up at the ringed area of raw (left) and rotated (right) stacks
with
Figure 4.22. A close-up at the near-surface area of raw (left) and rotated (right) stacks with 8.4% RMS diff
Sucks with 6.170 Idvis diff
Figure 4.23. Some reflections from the raw (top) and rotated (bottom) stacked sections with 0.1% RMS diff
sections with 0.170 RMs till.
Figure 5.1. Frequency response of the MEMS accelerometer to ground acceleration ($f_o = 1000 \text{ Hz}, \lambda = 0.01$)
acceleration ($f_o = 1000$ Hz, $\kappa = 0.01$)
Figure 5.2. Frequency response of the geophone to ground velocity ($f_o = 10$ Hz,
λ=0.7)
Figure 5.3. Frequency response of an accelerometer-to-geophone transfer
function ($f_o = 10 \text{ Hz}, \lambda = 0.7$)
Figure 5.4. Average amplitude spectra of all the VectorSeis data
Figure 5.5. Average amplitude spectra of all the geophone data79
Figure 5.6. Average amplitude spectra of all the converted data
Figure 5.7. Shot number 16 of the VectorSeis and geophone data, 500 ms AGC applied
11