

استخدام تكنولوجيا النانو لرفع كفاءة المباني السكنية مرجعية خاصة لكفاءة الطاقة و المواد

اعداد

وليد محمد بلال حسين ابوشوشة

رسالة مقدمة إلى كلية الهندسة – جامعة القاهرة كجزء من متطلبات الحصول على درجة ماجستير العلوم في الهندسة المعمارية

كلية الهندسة - جامعة القاهرة الجيزة - جمهورية مصر العربية

استخدام تكنولوجيا النانو لرفع كفاءة المبائي السكنية مرجعية خاصة لكفاءة الطاقة و المواد

اعداد وليد محمد بلال حسين ابوشوشة

رسالة مقدمة إلى كلية الهندسة - جامعة القاهرة كجزء من متطلبات الحصول على درجة ماجستير العلوم في الهندسة المعمارية

تحت اشراف

أ.د. ايمن حسان احمد استاذ دكتور العمارة كلية الهندسة – جامعة القاهرة أ.د. احمد رضا عابدين استاذ العمارة و التحكم البيئي كلية الهندسة – جامعة القاهرة

كلية الهندسة - جامعة القاهرة الجيزة - جمهورية مصر العربية

استخدام تكنولوجيا النانو لرفع كفاءة المباني السكنية مرجعية خاصة لكفاءة الطاقة و المواد

اعداد وليد محمد بلال حسين ابوشوشة

رسالة مقدمة إلى كلية الهندسة - جامعة القاهرة كجزء من متطلبات الحصول على درجة ماجستير العلوم في الهندسة المعمارية

يعتمد من لجنة الممتحنين:

الاستاذ الدكتور: احمد رضا عابدين المشرف الرئيسى استاذ العمارة و التحكم البيئي – كلية الهندسة – جامعة القاهرة

الاستاذ الدكتور: ايمن حسان احمد عضو استاذ العمارة – كلية الهندسة – جامعة القاهرة

الاستاذ الدكتور: محمد مؤمن عفيفي الممتحن الداخلي استاذ العمارة — كلية الهندسة — جامعة القاهرة

الاستاذ الدكتور: ماجدة اكرام عبيد الممتحن الخارجي أستاذ العمارة - معهد الدراسات والبحوث البيئية - جامعة عين شمس.

كلية الهندسة - جامعة القاهرة الجيزة - جمهورية مصر العربية

مهندس: وليد محمد بلال حسين ابوشوشة

تاريخ الميلاد: ١٩٨٥ / ١٩٨٥

الجنسية: مصري

تاريخ التسجيل: ١٠١١ / ٢٠٠٩

تاريخ المنح: ... \ ... ٢٠١٦ ٢٠١٦

القسم: الهندسة المعمارية

الدرجة: ماجستير العلوم

المشرفون:

ا.د. احمد رضا عابدین

ا.د. ايمن حسان احمد

الممتحنون:

أ.د احمد رضا عابدين (المشرف الرئيسي)

أ.د. ايمن حسان احمد (عضو)

أ.د محمد مؤمن عفيفي (الممتحن الداخلي)

أ.د ماجدة اكرام عبيد (الممتحن الخارجي)

أستاذ العمارة - معهد الدراسات والبحوث البيئية - جامعة عين شمس

عنوان الرسالة:

استخدام تكنولوجيا النانو لرفع كفاءة المبانى السكنية، مرجعية خاصة لكفاءة الطاقة و المواد

الكلمات الدالة:

المباني السكنية المستدامة، تطبيقات النانو، العمارة النانوية المستدامة، كفاءة الطاقة و المواد

ملخص الرسالة:

يتناول البحث العلاقة بين كل من التكنولوجيا والمسكن والاستدامة واظهار مدى تاثير التطور التكنولوجي المديثة المناني السكنية خاصة كفاءة الطاقة و المواد، وتطبيق التكنولوجيا الحديثة تكنولوجيا النانو لما تحملة من مستقبل واعد للبشرية في مختلف مجالات الحياة الداعمة للاستدامة.

USING NANOTECHNOLOGY TO IMPROVE THE EFFICIENCY FOR RESIDENTIAL BUILDING SPECIAL REFERANCE OF ENERGY AND MATERIALS

By

Waleed Mohamed Belal Abou Shousha

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Architectural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

USING NANOTECHNOLOGY TO IMPROVE THE EFFICIENCY FOR RESIDENTIAL BUILDING SPECIAL REFERANCE OF ENERGY AND MATERIALS

By Waleed Mohamed Belal Abou Shousha

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Architectural Engineering

Under the Supervision of

Prof. Dr. Ahmed Reda Abdin	Prof. Dr. Ayman Hassan Ahmed
Professor of Architecture Department of	Professor of Architecture Department of
Architecture Faculty of Engineering,	Architecture Faculty of Engineering,
Cairo University	Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

USING NANOTECHNOLOGY TO IMPROVE THE EFFICIENCY FOR RESIDENTIAL BUILDING SPECIAL REFERANCE OF ENERGY AND MATERIALS

By Waleed Mohamed Belal Abou Shousha

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Architectural Engineering

Approved by the
Examining Committee

Prof. Dr. Ahmed Reda Abdin, Thesis Main Advisor

Prof. Dr. Ayman Hassan Ahmed, Member

Prof. Dr. Mohamed Moemen Afify, Internal Examiner

Prof. Dr. Magda Akram Abeid, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Abstract

The need to apply the sustainability in our cities and houses became more urgent as a result of our environmental, economic and social condition from which the most of the residents of the world are suffering, especially because these conditions are not limited to a region or country, but their repercussions and impacts affect the whole world. As it is for science and technology to have a key role in the environmental situation from which we are suffering now, there is no substitute for science and technology but to correct and reform what they damaged. Nanotechnology is considered to have the potentials for a comprehensive change in the whole world and the creation of modern innovations that contribute in the formation of a sustainable future for humanity, but into this future we only have a very small window for this new science and what it can bring to the world. It is expected for the applications of nanotechnology to play a role in the fields of energy and materials raising the efficiency of residential buildings and achieve sustain-ability. The thesis is divided into five chapters through which the subject is presented in a sequential manner summed up as follows:

• Chapter one: There are significant challenges in achieving the dimensions of sustainability, especially the environmental dimension because of the problems such as the crisis of non-renewable energy and the global warming whose most important underlying causes are of gases such as CO2 and the construction sector is mainly responsible for its immersions. Therefore, sustainable architecture and green architecture offers attempts to reduce emissions and save energy, such as recycling and the efficiency of energy use ... etc. leading to sustainable housing and the performance measurement of programs that measure the performance of buildings through the following elements: the location - water efficiency - energy - the material used and indoor environmental quality.

- Chapter two: Understanding the nanotechnology as a direct reaction to global technological movement towards a better future. The control of material through small-sized nanoparticles provides an evolutional new technology to control the material and its characteristics and the design of new materials which may differ from traditional materials partly or as a whole. This technology has not limited disciplines but it is an expression of united multiple disciplines in several fields dealing in very small sized particles measured in nanometers.
- Chapter three: The nanotechnology applications through the elements of measuring the performance of sustainable residential buildings and focus on nanotechnology solutions in both energy and advanced nanomaterials that can be integrated into the building to raise its efficiency and reduce greenhouse gas emissions and reduce energy consumption. In additions to the reference to the future that awaits this promising technology.
- Chapter four: We find that the Nano-architecture achieve and accomplish the desired goals of sustainability that can be measured by the above mentioned measurements, where we find it in some applications that reduce carbon emissions and almost reach no emissions and thus affect the improvement of climate change. It also achieves economic targets in the future because of the produced energy is cheap form one hand and the life cycle of buildings is long from the other hand due to the efficient materials used. It also can deal with the existing buildings, not necessarily new buildings. The area of Aurora Buildings in the Uptown Cairo Project as a study center to prove the effectiveness of the use of nanotechnology to increase the efficiency of residential buildings and achieve sustainability goals and pass the assessment of sustainable housing standards.
- **Chapter five:** The results through the thesis and recommendations.

Engineer's Name: Waleed Mohamed Belal Abo Shousha

Date of Birth: 16 / 07 / 1985 **Nationality:** Egyptian

E-mail: Waleed.shousha@hotmail.com

Phone: 0100309939

Address: El Shorouk city - Cairo

Registration Date: 01 / 10 / 2009 **Awarding Date:**/ 2016 **Degree:** Master of Science

Department: Architectural Engineering

Supervisors:

Prof. Ahmed Reda Abden Prof. Ayman Hassan Ahmed

Examiners:

Porf. Ahmed Reda Abdin (Thesis main advisor)

Porf. Ayman Hassan Ahmed (Member)

Prof. Mohamed Moemen Afify (Internal examiner)
Prof. Magda Ekram Abeid (External examiner)
Professor of Architectura Institute of Environments

Professor of Architecture – Institute of Environmental

Studies and Researches - Ain shams university

Title of Thesis:

Using nanotechnology to improve the efficiency for residential building Special reference of energy and materials

Key Words:

Sustainable residential building, Nanotechnology application, Nano sustainable architecture, Energy and material efficiency

Summary:

This thesis deals with the relationship between technology, the housing and the sustainability and show the impact of technological development to improve the efficiency of residential buildings specially the efficiency of energy and materials, and The application of modern technology (Nanotechnology) because of its inherent promising future for mankind in various fields of life in support of sustainability

شكر وتقدير

بعد ان من الله تعالى على بانجاز هذه الرسالة و انطلاقا من قول الرسول صل الله عليه وسلم: من لا يشكر الناس لا يشكر الله. اتقدم بجزيل الشكر و العرفان الي من سعدت بالتتامذ على ايديهم الى اساتذتى

استاذ العمارة الدكتور :احمد رضا عابدين الاستاذ الدكتور :ايمن حسان احمد

على قبولهم الاشراف على هذه الرسالة و على توجيههم و رعايتهم و تشجيعهم لي، فلم يتواني اي من الاستاذين الفاضلين في بذل كلا من جهدهم و وقتهم لا تمام هذا العمل المتواضع.

كما لتقدم بالشكر و التقدير لعضوي لجنة المناقشة الاستاذة الدكتورة :ماجدة اكرام عبيد, و الاستاذ الدكتور :محمد مؤمن عفيفي لقبولهما مناقشة هذه الرسالة.

و اخيرا اتوجه بكل مشاعر الحب و العرفان لابي و امي و زوجتي و اختي و كل من ساعدني و قدم لي العون في انجاز هذه الرسالة .و الله ولي التوفيق

الباحث المهندس: وليد محمد بلال ابوشوشة

قائمة المحتويات

الصفحة	المحتوي
Í	شكر و تقديرشكر و تقدير
ب	قائمة المحتويات
2	قائمة الجداول
ż	قائمة الأشكال
<u>ش</u>	قائمة التعريفات
ض	ملخص البحث
ظ	مقدمة البحث
ع	المشكلة البحثية
ع	اهداف البحث
<u></u> غ	الفرضية البحثية
غ	منهجية البحث
ف	الهيكل البحثي
1	الفصل الاول: استدامة المباني السكنية
7	١ + المقدمة
٣	١ ٢ -التتمية المستدامة و العمارة
٣	۱ ۲ + + الاستدامة
	١ ٢ ٢ التنمية المستدامة
	١ ٢ ٣ + العمارة المستدامة
٠	١-٢-٣-١ مصطلح العمارة المستدامة
٦	١-٢-٣-٢ الدعائم الثلاثة للعمارة المستدامة
١٠	۱ ۳ المسكن المستدام
١٣	١ ٤ -انظمة تقييم استدامة المباني السكنية
١٤	١-٤-١ نظام BREEAM المملكة المتحدة
	١-٤-١- نظام LEED الولايات المتحدة الامريكية
	۳-٤-۱ نظام CASBEE اليابان

10	استرالیا GREEN STAR استرالیا
10	۰–۱–۱ نظام GPRS مصر
١٧	١ → الدور المستقبلي للاستدامة في حل المشاكل البيئية
۱٧	١-٥-١- مؤتمر تغير المناخ الذي عقدته الامم المتحدة ٢٠٠٩ بكوبنهاجن
	١-٥-٢- مواجهة تحدي اجندة ٢٠٣٠
19	١-٥-٣- مجلس الاعمالالعالمي للتنمية المستدامة WBCSD
۱۹	١ ٦ -الخلاصة
۲١	لفصل الثاني: النانو و تكنولوجيا النانو
۲۲	٢ – ١ – المقدمة
۲۳	٢-٢– مفهوم النانو
۲ ٤	۲-۳- مبادئ و ممیزات تقنیة النانو
	٢-٤- تكنولوجيا النانو
70	٢-٤-١- تكنولوجيا النانو في العصور القديمة
۲٧	٢-٤-٢ نبذة تاريخية عن تطور تكنولوجيا النانو
	٢-٥- المواد النانوية
۲٩	٢-٥-١- تصنيف المواد النانوية
٣.	٢-٥-١-١- الحبيبات النانوية
۳١	٢-٥-١-٢ الانابيب النانوية و الاسلاك النانوية
۳١	٢-٥-١-٣- الرقائق او الاغشية النانوية
٣٢	٢-٥-١-٤ مواد مسامية نانوية
٣٣	٢-٥-٢- خواص المواد النانوية
٣٣	٢-٥-٢- خواص المواد النانوية الميكانيكية
٣٤	٢-٥-٢- خواص المواد النانوية الكيميائية
٣٤	٢-٥-٢-٣ خواص المواد النانوية الفيزيائية
30	٢-٥-٢-٤ خواص المواد النانوية البيولوجية
30	٢-٥-٣- تصنيع المواد النانوية
٣٦	٢-٥-٣-١ تقنية الهبوط من اعلي لاسفل
٣٧	٢-٥-٣-١ تقنية الصعود من اسفل لاعلي

٣٧	٢-٦- تطبيقات تكنولوجيا النانو بالقطاعات الصناعية و الانتاجية
٣٨	٢-٦-١- الجزيئات النانوية
٣٨	٢-١-١-١ اكاسيد المعادن
٣9	٢-٦-١-٦- الكربون
٣9	٢-٦-١-٣- الطمي النانوي
٤٠	٢-٦-١-٤ جزيئات النانو العضوية
٤٠	٢-٦-٦ المركبات النانوية
٤.	٢-٦-٢- مركبات النانو للبليمرات
٤١	٢-٦-٢- مركبات المصفوفة المعدنية
٤١	٢-٦-٢-٣ المركبات النانو السيراميكية
٤١	٢-٧- اقتصاد النانو
٤٣	۲-۸- مخاطر مواد و تكنولوجيا النانو
٤٤	٢-٩- الخلاصة
٤٥	الفصل الثالث: تطبيقات تكنولوجيا النانو في العمارة
٤٦	٣-١- مقدمة
٤٦	٣-٢- تكنولوجيا النانو و العمارة
٤٧	٣-٣- تاثير تكنولوجيا النانو علي المباني المعمارية
٤٧	٣-٤- تطبيقات تكنولوجيا النانو و الطاقة
٤٩	٣-٤-٢ الطاقة الشمسية
٤٩	٣-٤-١-١- الخلايا الشمسية النانوية
01	٣-١-٤- الخلايا الشمسية ذات الطبقات الرفيعة
٥٣	٣-١-٤-٣ جزيئات ثاني اكسيد التيتانيوم المصنوعة من الافلام الصبغية
00	٣-٤-١-٤- النقاط الكمومية للخلايا الشمسية
00	٣-٤-١-٥- طبقات النانو ضد الانعكاس
00	٣-٤-٢- طاقة الرياح
07	٣-٤-٣ اعادة استخدام الوقود الاحفوري
٥٦	٣-٤-٤- تخزين الطاقة
01	٣-٤-٤- زيادة الضغط على الهيدروجين