

Ain Shams University Faculty of Science Biochemistry Department

Human epididymis protein 4 as a novel diagnostic ovarian cancer biomarker: comparison with cancer antigen 125 in Egyptian ovarian cancer patients

A thesis submitted in partial fulfillment of the requirements for M.Sc. degree in Biochemistry

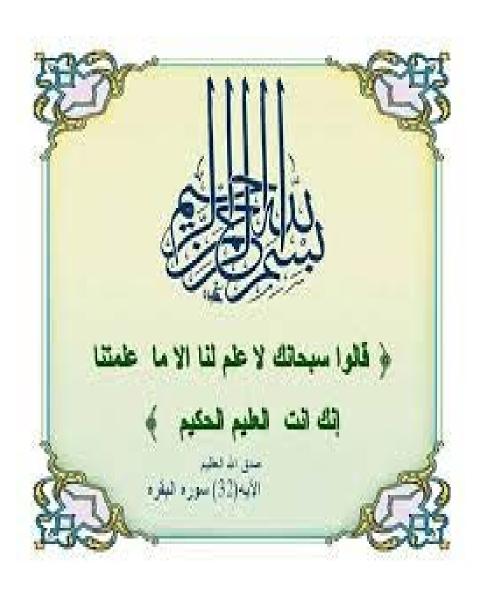
Mohamed Hassan Abd El-Magied

B.Sc. in Biochemistry (2008)

Under the supervision of

Prof. Dr. Mohamed Ragaa Mohamed

Professor of Biochemistry and Molecular Biology Faculty of Science Ain Shams University


Dr. Amal Fawzy Said

Dr. Mohamed A. M. Ali

National Cancer Institute Faculty of Medicine - Cairo University

Assistant Professor of Clinical Pathology Assistant Professor of Biochemistry Faculty of Science Ain Shams University

> **Faculty of Science Ain Shams University** 2016

This thesis has not been submitted to this or any other university

Mohamed Hassan Abd El-Magied

ACKNOWLEDGEMENT

First of all, cordial thankfulness to "Allah" who enabled me to finish this piece of work appropriately.

I would like to express my deep appreciation and gratitude to *Prof. Dr.* Mohamed Ragaa Mohamed, Professor of Biochemistry and Molecular Biology, Faculty of Ain University, his Science, Shams for consistent supervision, constructive suggestions and meticulous scientific help.

Words are not enough and fail to express my deep thanks and gratitude to *Dr. Mohamed Ahmed Mohamed Ali*, Assistant Prof. of Biochemistry, Faculty of Science, Ain Shams University, for his valuable encouragement, sincere guidance and wholehearted support throughout this work.

My deepest appreciation and thanks are offered to *Dr*. *Amal Fawzy Said*, Assistant Prof. of Clinical Pathology, National Cancer Institute, Cairo University, for her great support, helpful advice, valuable technical assistance and fruitful comments.

My deepest appreciation and thanks are offered to Pathology department, National Cancer Institute, Cairo University for their great support and helpful.

Finally, I take this opportunity to express my profound gratitude to my beloved parents, my lovely sincere wife for their moral support and patience during this work.

Mohamed Hassan Abd El-Magied

DEDICATION

This thesis is proudly dedicated to my beloved family (my parents and my wife)

Thanks for your endless love, prayers, sacrifices and support

Mohamed Hassan Abd El-Magied

CONTENTS

	Page
❖ List of Abbreviations	i
❖ List of Figures	iv
❖ List of Tables	V
❖ Abstract	
❖ Introduction	1
❖ Aim of the work	6
❖ Review of literature	7
 Cancer of the ovary 	7
✓ Incidence	7
✓ Risk Factors	7
✓ Types of ovarian cancer	9
✓ Cytogenetic features and oncogenesis of	
ovarian carcinoma	11
✓ Epithelial ovarian cancer	13
✓ Histologic subtypes of EOCs	18
I. Serous carcinoma	18
II. Endometrioid carcinoma	23
III. Clear cell carcinoma	25
IV. Mucinous carcinoma	28
V. Transitional cell carcinoma	30
✓ Grading of ovarian carcinomas	33
✓ Staging of ovarian carcinomas	34
• Treatment of ovarian cancer	37
 Diagnosis of ovarian cancer 	44

	 Biomarkers for ovarian cancer 	47
	I. Gene-based ovarian cancer biomarkers	49
	1) Inherited gene mutations	49
	2) Gene expression	50
	II. MicroRNA-based ovarian cancer	
	biomarkers	51
	III. Serum ovarian cancer biomarkers	54
	1) Cancer antigen 125	56
	2) Mesothelin	60
	3) Inhibin	61
	4) Osteopontin	62
	5) Carbohydrate antigen 72-4	63
	6) Human epididymis protein 4	63
	✓ Risk of ovarian malignancy algorithm	65
*	Subjects and Methods	68
	Study population and design	68
	• Eligibility criteria	68
	• Exclusion criteria	68
	 Clinical diagnosis 	69
	Biochemical investigations	70
	✓ Measurement of serum CA125 levels	71
	✓ Measurement of serum HE4 levels	74
	✓ Calculation of the ROMA score	79
	• Quantification of tissue CA125 and HE4	
	mRNA levels	80
	I. RNA extraction	80
	II. cDNA synthesis	84
	III. TaqMan gene expression assay	88
	• Statistical analysis	94
.	Results	96
	 Demographic and clinical characteristics of 	, ,

	the study cohort	96
	• Serum CA125 and HE4 concentrations and ROMA score	99
	• Tissue expression of CA125 and HE4 encoding genes	104
	• Correlation between CA125, HE4 and ROMA	106
	 Diagnostic accuracy of CA125, HE4 and ROMA 	113
*	Discussion	116
*	Summary	134
*	References	138
*	Arabic summary	
*	Arabic abstract	

LIST of ABBREVIATIONS

Abbreviation Full name

ARID1A : AT-rich interactive domain 1A

AUC : area under the curve β-ME : β-mercaptoethanol

BRAF : v-Raf murine sarcoma viral oncogene

homolog B

BRCA1 : breast cancer type 1 susceptibility protein BRCA2 : breast cancer type 2 susceptibility protein

CA125 cancer antigen 125

CA72-4 : carbohydrate antigen 72-4

CCC : clear cell carcinoma

CMIA : chemiluminescent microparticle

immunoassay

CT : computed tomography

Ct : cycle threshold

CTNNB1 : catenin [cadherin-associated protein] beta 1

DUSP4 : dual specificity phosphatase, 4

EC : endometrioid carcinoma

EGFR : epidermal growth factor receptor

EIA : enzyme immunoassay EOC : epithelial ovarian cancer

FIGO : international federation of gynecology and

obstetrics

FISH : fluorescence in situ hybridization

GAPDH : glyceraldehyde 3-phosphate dehydrogenase

GCIG : gynecologic cancer inter-group HBOC : hemoglobin-based oxygen carrier HE4 : human epididymis protein 4

HER2/ : epidermal growth factor receptor 2

ERBB2

HGEC : high-grade endometrioid carcinoma

HGSC : high-grade serous carcinoma

hMLH1 : human mutL homolog 1 hMSH2 : human mutS homolog 2 HNF1 : hepatocyte nuclear factor 1

HNPCC : hereditary non-polyposis colorectal

carcinoma

HRD : homologous repair deficiency

HRP : horseradish peroxidase

HRR : homologous recombination repair

IQR : interquartile range

KRAS : Kirsten rat sarcoma viral oncogene homolog

LGEC : low-grade endometrioid carcinoma

LGSC : low-grade serous carcinoma
LMP : low malignant potential
MAb : monoclonal antibody
MAP : mitogen-activated protein

mBRCA : breast cancer susceptibility gene mutation

MC : mucinous carcinoma

MEK : mitogen extracellular signal-regulated kinase

MMMT : malignant mixed mesodermal tumors

MMR : mismatch repair

MPF : megakaryocyte potentiation factor

MR : magnetic resonance

mTOR : mammalian target of rapamycin

MUC16 : mucin 16

NPV : negative predictive value

NRAS : neuroblastoma rat sarcoma viral oncogene

homolog

OPN : osteopontin

p53 : tumor protein 53

PARP : poly (ADP-ribose) polymerase

PAX2 : paired box gene 2

PCR : polymerase chain reaction
PFI : platinum-free interval

PI predictive index

PIK3CA : phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit alpha

PP : predicted probability

PPP2R1A : protein phosphatase 2, regulatory subunit A,

alpha

PPV : positive predictive value

PTEN : phosphatase and tensin homolog

qRT-PCR : quantitative real time polymerase chain

reaction

RLUs : relative light units

RMI : risk of malignancy index

ROC : receiver operating characteristic ROMA : risk of ovarian malignancy algorithm

RT-PCR : reverse transcriptase polymerase chain

reaction

RV : reaction vessel

SERPINA5 : serpin peptidase inhibitor, clade A (alpha-1

antiproteinase, antitrypsin), member 5

TGF- β : transforming growth factor-beta

TKR : tyrosine kinase receptor

TMB : 3, 3′, 5, 5′-tetramethylbenzidine UC : undifferentiated carcinomas

US : ultrasound

VEGF : vascular endothelial growth factor

WAP whey acidic protein

WFDC2 : whey acidic protein four-disulfide core

domain 2

WHO : world health organizationZNF217 : zinc finger protein 217

LIST of FIGURES

Figure	Legend	Page
No.		
1	Prevalence of histologic types of EOC and	
	their associated molecular genetic	
	alterations	14
2	Oncogenesis of serous and mucinous	
	ovarian carcinoma (a) as well as clear cell	
	and endometrioid ovarian carcinoma (b)	17
3	Current treatment strategy in EOC	42
4	Treatment evolution of EOC based on	
-	biology and evidence	43
5	Flow chart algorithm for the diagnosis of a	15
3	suspected pelvic mass	46
6	1 1	40
U	Principle of the chemiluminescent	70
7	microparticle immunoassay	72
7	Principle of the sandwich enzyme	
	immunoassay	76
8	Principle of the TaqMan gene expression	
	assay	90
9	ROC curve analysis of serum and tissue	
	CA125 and HE4, either alone or in	
	combination, and of ROMA for the	
	diagnosis of EOC by comparing benign	
	ovarian tumor patients with EOC patients	115
	Oranian tainor panemo with LOC panemo	113

LIST of TABLES

Table	Title	Page
No.	Dualistic model of avanian consinuacing	11
1	Dualistic model of ovarian carcinogenesis	11
2	Genes linked with ovarian carcinomas	12
3	Clinical and molecular features of the five most common types of EOCs	15
4	Precursors, molecular alterations and characteristic features of the histologic	
	subtypes of EOC	32
5	International federation of gynecology and	
6	obstetrics (FIGO) staging system for EOC New serum biomarkers associated with	36
O	ovarian cancers	55
7	Demographic and clinical characteristics of	
	epithelial ovarian cancer patients	98
8	Serum CA125 and HE4 concentrations and	
	ROMA score among healthy women, benign	
	ovarian tumors patients and epithelial	100
0	ovarian cancer patients	100
9	CA125 and HE4 serum concentrations and	
	ROMA score in epithelial ovarian cancer	
	patients according to histological type,	103
10	differentiation grade and FIGO stage Expression levels fold change of MUC16	103
10	(encoding CA125) and WFDC2 (encoding	
	HE4) in tissue specimens of patients with	
	benign ovarian tumors and EOC relative to	
	healthy controls	105
11	Correlation between serum CA125 and other	
	variables in patients with benign ovarian	
	tumors and EOC	108

12	Correlation between serum HE4 and other	
	variables in patients with benign ovarian	
	tumors and EOC	109
13	Correlation between ROMA and other	
	variables in patients with benign ovarian	
	tumors and EOC	110
14	Correlation between tissue CA125 fold	
	change and other variables in patients with	
	benign ovarian tumors and EOC	111
15	Correlation between tissue HE4 fold change	
	and other variables in patients with benign	
	ovarian tumors and EOC	112
16	Comparison of the diagnostic performance of	
	CA125, HE4 and ROMA in discriminating	
	epithelial ovarian cancer from benign ovarian	
	tumors	114

ABSTRACT

Ovarian cancer remains a major worldwide health care issue due to the lack of satisfactory diagnostic methods for early detection of the disease. Prior studies on the role of serum cancer antigen 125 (CA125) and human epididymis protein 4 (HE4) in detecting ovarian cancer present conflicting results. New tools sought to improve the accuracy of identifying malignancy are urgently needed. We aimed to evaluate the diagnostic utility of tissue CA125 and HE4 gene expression in comparison to serum CA125 and HE4 in discriminating benign from malignant pelvic masses. Onehundred Egyptian women were enrolled in this study, including 60 epithelial ovarian cancer (EOC) patients, 20 benign ovarian tumor patients as well as 20 apparently healthy women. Preoperative serum levels of CA125 and HE4 were measured by immunoassays. Tissue expression levels of genes encoding CA125 and HE4 were determined by quantitative real time polymerase chain reaction (qRT-PCR). The diagnostic performance of CA125 and HE4, measured either as mRNA or protein levels, was evaluated by receiver operating characteristic (ROC) curve. Serum CA125+serum HE4 combination and serum HE4 with area under the curve (AUC) values of 0.935 and 0.932, respectively, performed significantly better than serum CA125 alone (AUC=0.592; P<0.001). Tissue CA125 and HE4 (AUC=1) performed significantly better than serum CA125 (P < 0.001), serum HE4 (P = 0.016) and serum CA125+serum HE4 combination (P=0.018). Measurement of tissue CA125 and HE4 gene expression not only improves the discriminatory performance, but also broadens the range of differential diagnostic possibilities in distinguishing EOC from benign ovarian tumors.