Biological Assessment of Three Experimental Toothpaste Additives

Thesis

Submitted to the Faculty of Dentistry,
Ain Shams University
For the partial fulfillment of the requirements of
The Doctor Degree in Operative Dentistry

By

Hanaa Mahmoud El sayed El mahdy El gamily B.D.S. 2003, M.D.S. 2011, Ain Shams University

Ain Shams University
Faculty of Dentistry
Department of Operative Dentistry
2015

Supervisors

Ass. Prof. Dr. Khaled Aly Nour

Assistant Professor in Department of Operative Dentistry
Faculty of Dentistry
Ain Shams University

Prof. Dr. Mohamed Hussein Zaazou

Researcher Professor of Restorative Dentistry and Dental Material Research Department National Research Center

Prof. Dr. Nyra Shaker Mehanna

Researcher Professor in Department of Dairy Science,
Food Science and Nutrition
National Research Center

ACKNOWLEDGEMENT

I would like to express my deep appreciation to *Dr. Khaled Aly Nour*, Assistant Professor in Department of Operative Dentistry, Faculty of Dentistry, Ain Shams University, for his valuable ideas, stimulating advices, constant encouragement and keen supervision throughout the research program.

My deepest appreciation and sincere gratitude go to *Prof. Dr. Mohamed Hussein Zaazou*, Researcher Professor of Restorative dentistry and dental material research Department, National Research Center, for his unforgettable help, advice, guidance and cooperation.

Words are not enough to express how deeply I am grateful to all the help that *Prof. Dr. Nyra Shaker Mehanna*, Researcher Professor in Department of Dairy Science, Food Science and Nutrition, National Research Center, has offered and for scarifying much of her time for this work to be done.

My thanks are extended to *Dr. Shaimaa Mohamed Nagi*, Researcher in Department of Operative Dentistry, Restorative and Dental Material, National Research Center, for her kind cooperation and many helpful suggestions for improvement, which have been of great value.

I am deeply grateful to *Dr. Ahmed Alaa Kassem*, Researcher in Department of Pharmaceutical Technology, National Research Centre, for his great help in providing the required material for this study.

Dedication

First and foremost I thank God who paved the way and only by his well everything can be achieved.

To my father and my mother for their unlimited Love, Giving and whose support & encouragement have always been my inspiration.

To my husband and my kids for their love and patience.

بسم الله الرحمن الرحيم

مَّ هَالُوا سُبْدَانَكَ لا عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتُ الْعَلِيمُ " "مُعِكِمُا"

صدق الله العظيم سورة البقرة الآية (٣٢)

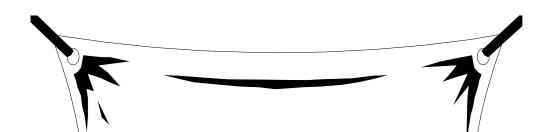
LIST OF CONTENTS

Cont	tents	Page
List	of Content	i
List	of Tables	ii
List	of Figures	iv
Intro	oduction	1
Revi	lew of literature	3
I. II.	Natural anti- <i>mutans streptococci</i> agents	
Aim	of the study	25
Mate	erials and Methods	26
Resu	ılts	73
Disc	russion	90
Sum	nmary and Conclusions	102
Refe	rences	105
Appe	endix	.120
Arab	bic summary	• • • • •

LIST OF TABLES

Tables		Page
Table (1):	The description and manufacturers of the experimental	27
	toothpaste base ingredients.	
Table (2):	The three natural additives used in the study.	28
Table (3):	The Name, manufacturer and listed ingredients of	28
	commercial toothpaste.	
Table (4):	Components and manufacturers of the cultures media	29
	used in the study.	
Table (5):	The equipments used in the study.	30
Table (6):	Levels of the study.	53
Table (7):	Factorial design and variables interaction for	53
	the minimum inhibitory concentration detection.	
Table (8):	Levels of the study.	59
Table (9):	Factorial design and variables interaction	59
	of four different mixtures in the toothpaste.	
Table (10)	: The means and the results for comparison	74
	between inhibition zones exhibited.	
	by the active ingredients against S. mutans.	
Table (11)	: The means and the results for comparison	76
	between inhibition zones exhibited by the	
	experimental toothpastes with each concentration.	
Table (12)	: The means and the results for comparison	78
	between inhibition zones exhibited by	
	the different concentrations with each	
	experimental toothpaste.	

Table	(13):	The means and the results for comparison	80
		between inhibition zones exhibited by	
		the mixtures of experimental toothpastes	
		at each time period.	
Table	(14):	The means and the results for	82
		comparison between inhibition zones	
		exhibited at different time periods with each mixture.	
Table	(15):	The means and the results for comparison	84
		between Log_{10} CFU/g of L. rhamnosus after using	
		the mixtures of experimental toothpastes	
		at each time period.	
Table	(16):	The means and the results for comparison	86
		between Log ₁₀ CFU/g of L. rhamnosus	
		at different time periods after	
		using the mixtures of experimental toothpastes.	
Table	(17):	The means and the results for comparison	87
		between survival % of L. rhamnosus after using	
		the mixtures of experimental toothpastes.	
Table	(18):	The means and the results for comparison	89
		between Log ₁₀ CFU/ml of salivary S. mutans at	
		different time periods after using experimental	
		toothpaste (M4)	


LIST OF FIGURES

Figures	Page
Fig. 1: the experimental toothpaste base ingredients.	31
Fig. 2: The three natural additives used in the study.	31
Fig. 3: Components of Mitis Salivarius Bacitracin medium.	32
Fig. 4: Tryptone Soya agar and broth.	32
Fig. 5: MRS broth with Tween 80.	32
Fig. 6: Sterile cotton tipped swab.	33
Fig. 7: Vortex mixer.	33
Fig. 8: Automatic micropipette.	33
Fig. 9: Incubator.	34
Fig. 10: Centrifuge.	34
Fig. 11: Magnetic stirrer.	35
Fig. 12: Lyophilizer.	35
Fig. 13: pH Meter.	36
Fig. 14: Microplate reader.	36
Fig. 15: A water jacketed CO2 incubator.	36
Fig.16: Identification of Streptococcus.mutans on Mitis	38
salivarius-bacitracin selective medium (MSB).	
Fig.17: Gram stain appearance of Streptococcus.mutans.	38
Fig.18: Taken colony of S. mutans to Treptone Soya broth	40
for pathogen growth.	
Fig.19: Dispersion 50µl of S. mutans on the surface of	40
testing plate	
Fig.20: L-shaped glass rod for spreading the pathogen.	40
Fig.21: The antimicrobial effect of each ingredient	42
of the experimental prepared toothpaste base	
by disc diffusion method.	

Fig.22: The passivity effect of Coconut oil against	42
S. mutans by disc diffusion method.	
Fig.23: Specially prepared toothpaste base.	43
Fig.24: Passive effect of experimental prepared toothpaste base	43
against S. mutans growth by	
well diffusion method.	
Fig.25: Extraction of Propolis and Miswak	45
Fig.26: Centrifugen of Miswak and Propolis	46
Fig.27: Lipholization of supernatant Miswak and Propolis extract.	46
Fig.28: Dried Propolis extract.	47
Fig.29: Dried Miswak extract.	47
Fig.30: The pellet after centrifugation of cultured bacteria.	48
Fig.31: White color colonies of Lactobacillus rhamnosus	49
Fig.32: Lactobacillus rhamnosus under microscope	49
Fig.33: Inhibitory effect of Miswak extract, L.R strain, and	51
Propolis extract against St. mutans growth using	
disc diffusion method.	
Fig.34: Experimental prepared toothpastes with different	51
concentrations of the incorporated additive	
Fig.35: Antimicrobial test for experimental prepared toothpastes	55
containing different concentrations	
of Miswak extract.	
Fig.36: Antimicrobial test for experimental prepared toothpastes	56
containing different concentrations	
of Propolis extract.	
Fig.37: Antimicrobial test for experimental prepared toothpastes	57
containing different concentrations	
of Probiotic strain.	

Fig.38: Four experimental toothpastes from different mixtures	58
of MIC of each additive.	
Fig.39: Antimicrobial activity of four experimental toothpastes	60
at 24hrs.	
Fig.40: Antimicrobial activity of four experimental toothpastes	61
at 15 days.	
Fig.41: Antimicrobial activity of four experimental toothpastes	61
at 30 days.	
Fig.42: Antimicrobial activity of commercial	62
herbal toothpaste.	
Fig.43: Enumeration of <i>L. rhamnosus</i> cells in its mixture	64
with propolis extract in the experimental toothpaste M1	
after 24 hrs,15 days, and 30 days.	
Fig.44: Enumeration of <i>L. rhamnosus</i> cells in its mixture	65
with Miswak extract in the experimental toothpaste M2	
after 24 hrs,15 days, and 30 days.	
Fig.45: Enumeration of <i>L. rhamnosus</i> cells in its mixture	66
with propolis and Miswak extracts in the experimental	
toothpaste M4 after 24 hrs,15 days, and 30 days.	
Fig.46: In cytotoxicity test; cells culture,	69
and cells confluence.	
Fig.47: Cytotoxic effect of different concentrations	69
of the experimental toothpaste and	
the commercial toothpaste on Wish cells.	
Fig.48: The selected experimental toothpaste for <i>in vivo</i> study.	70

Fig.49: Bar chart representing mean inhibition zone diameters	74
(mm) exhibited by the active ingredients	
against S. mutans.	
Fig.50: Bar chart representing mean inhibition zone diameters	76
exhibited by the experimental toothpastes with each	
concentration.	
Fig.51: Bar chart representing mean inhibition zone diameters	78
exhibited by the different concentrations with each	
experimental toothpaste.	
Fig.52: Bar chart representing mean inhibition zone diameters	80
exhibited by the mixtures of experimental toothpastes	
at each time period.	
Fig.53: Bar chart representing mean inhibition zone diameters	82
exhibited at different time periods with each mixture.	
Fig.54: Bar chart representing mean Log ₁₀ CFU/g of <i>L. rhamnosus</i>	84
after using the mixtures of experimental toothpastes	
at each time period.	
Fig.55: Bar chart representing mean Log ₁₀ CFU/g of <i>L. rhamnosus</i>	86
at different time periods after using the mixtures of	
experimental toothpastes.	
Fig.56: Bar chart representing mean survival % of <i>L. rhamnosus</i>	88
after using the mixtures of experimental toothpastes.	
Fig.57: Bar chart representing mean Log10 CFU/ml of	89
salivary S. mutans at different time periods before	
and after using the experimental toothpaste (M4).	

INTRODUCTION

Dental caries is one of the most common infectious diseases affecting humans. *Streptococcus mutans* (*S. mutans*) has been consistently linked with the formation of human dental caries and is the most commonly implicated initiator and plaque-resident bacterium. *S. mutans* begins demineralization and the metabolism of simple carbohydrates; this produces acid as a byproduct, which leads to tissue loss and further bacterial penetration (43,122).

For centuries, people in the Middle East and adjoining areas of Africa had used chewing sticks, called Miswak, to maintain oral hygiene ⁽¹⁷⁾. The roots and branches of the Arak (Salvadora persica) tree are the most common sources of Miswak ⁽³³⁾. Several studies reported the antibacterial activity of chewing stick of Miswak and its extracts against cariogenic bacteria ^(2,14).

In recent times, the concept of restoring and maintaining oral health by use of beneficial bacteria (probiotics), such as *Streptococcus salivarius* expressing bacteriocins against oral pathogens, has been asserted ⁽²⁶⁾. *Lactobacillus rhamnosus* (*L. rhamnosus*) is also known to inhibit the growth of cariogenic streptococci by producing anti-streptococcal substance and the inability of *L. rhamnosus* to ferment sucrose or lactose greatly increases its potential as a good probiotic against cariogenic streptococci ⁽¹³³⁾.

Moreover the use of natural agents (like propolis) against selected oral pathogens had been reported. Propolis which is a natural resinous, sticky, dark-colored product from honeybees has been used for hundreds of years in folk medicine for several purposes. The ethanol extract of propolis possesses several biological activities such as anti-inflammatory, antifungal, antiviral, antimicrobial activity and the inhibitory action against the growth of *S. mutans* and its production of glucosyltransferase, the enzyme responsible for the formation of dental plaque and caries (25,40).