Endometrial Assessment in the Prediction of Pregnancy Outcome after Embryo Transfer

Thesis

Submitted in Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By John Emil Boulos Grace

M.B.B.Ch. 2001

Faculty of Medicine-Cairo University. Diploma in Obstetrics and Gynecology 2007 Faculty of Medicine-Ain Shams University

Supervised By

Professor Dr. Amr Abdel Aziz Nadim

Professor of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Professor Dr. Fekrya Ahmed Salama

Professor of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Dr. Amr Abdel Aziz Elsayied

Lecturer of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgements

First, I would like to praise and thank **Allah**, the most merciful and beneficial for his help to complete this work.

I am greatly indebted to Professor Dr. Amr Abdel Aziz Nadim, Professor Dr. Fekrya Ahmed Salama and Dr. Amr Abdel Aziz Elsayied my supervisors, for the guidance and mentorship they rendered to me during the preparation and accomplishment of this dissertation.

I would like to acknowledge all members of the Obstetrics and Gynecology Department at Ain Shams University for their assistance and encouragement during all stages of preparation and accomplishment of this dissertation. I would like to thank all Consultants, Specialists, Residents, Registrars and Nurses.

Many thanks to **Dr. Azza Awad Abd El-Razik**, the Embryology Lab Director for her kind assistance and guidance throughout the whole project.

Table of Contents

Acknowledgements	I
Table of contents	II
List of tables	IV
List of graphs	V
Glossary of terms	VII
Introduction and aim of work	IX
Review of literature	1 48
Chapter 1; Assisted Reproductive Technology (ART)	1 24
(In-Vitro Fertilization [IVF] and Intracytoplasmic Sperm Injection [ICSI])	
1. Assisted Reproductive Technology (ART)	1
2. Physiological and molecular determinants of embryo implantation	9
3. In vitro fertilization (IVF)	17
4. Understanding fertilization through Intracytoplasmic Sperm Injection (ICSI)	21
Chapter 2; Endometrium in Assisted Reproductive Technology	25 39
1. What is thin endometrium? Does thin endometrium	25
cause infertility?	_ _3
2. Does thick endometrium have a harmful effect on successful implantation?	28
3. Endometrial pattern	29

4. Which tool is the best one for determining the	32
endometrial thickness?	
5. What are the causative factors for thin	38
endometrium?	
Chapter 3; Ultrasonography and Assisted Reproductive 40	0 48
Technology	
1. Ultrasound assessment of the peri-implantation	40
uterus	
Subjects and methods 49	9 56
Results 57	7 84
Discussion 85	5 93
Summary 94	100
Conclusions	101
Recommendations	102
References 103	135
Arabic summary	
Conclusions Recommendations References 103	101 102

List of Tables

1	Current Indications for In Vitro Fertilization	1
2	Characteristics of the study population	57
3	Endometrial thickness and pattern among the study	58
	subjects	
4	Biochemical and clinical pregnancy among the studied	61
	subjects	
5	Stratified analysis for the incidence of biochemical	63
	pregnancy by endometrial thickness and endometrial	
	pattern	
6	Stratified analysis for the incidence of clinical	64
	pregnancy by endometrial thickness and endometrial	
	pattern	
7	Duration of infertility	65
8	Characteristics of patients with positive or negative	66
	biochemical pregnancy test	
9	Characteristics of patients with positive or negative	72
	clinical pregnancy test	
10	Receiver-operating characteristic (ROC) curve analysis	77
	for prediction of biochemical or clinical pregnancy	
	using the endometrial thickness	
11	Receiver-operating characteristic (ROC) curve analysis	80
	for prediction of biochemical or clinical pregnancy	
	using the pattern A endometrium	

12	Multivariable binary logistic regression analysis for	83
	prediction of biochemical pregnancy	
13	Multivariable binary logistic regression analysis for	84
	prediction of clinical pregnancy	

List of Graphs

1	Pregnancy rates after IUF and after surgical repair of	3
	different stages of tubal disease	
2	Expanded 5-day-old blastocyst starting to hatch	7
3	Hormonal control of embryo implantation in mice	11
4	Factors governing decidualization and immune	16
	tolerance after embryo invasion	
5	The uterine junctional zone appearing as a low-signal	45
	area between the endometrium and the myometrium on	
	a pelvic magnetic resonance image	
6	Three-dimensional rendered view of the uterus in the	46
	coronal plane	
7	Three-dimensional view of the uterus in the coronal	47
	plane	
8	Transvaginal ultrasound post-implantation	48
9	Longitudinal ultrasound images demonstrate the	53
	endometrial pattern	
10	chart showing the percentage of patients with an	59
	endometrial thickness of <7 mm, 7-14 mm, or > 14 mm	
11	Pie chart showing the percentage of patients with a	60
	pattern A or pattern B endometrium	
12	Pie chart showing the percentage of patients with a	61
	positive or negative biochemical pregnancy test	
13	Pie chart showing the percentage of patients with	62
	positive or negative clinical pregnancy	

14	Mean endometrial thickness in patients with positive	96
	or negative biochemical pregnancy	
15	Percentage of patients with an endometrial thickness of	70
	<7 mm, 7-14 mm, or > 14 mm among those with a positive	
	or negative biochemical pregnancy test	
16	Percentage of patients with a pattern A or pattern B	7]
	endometrium among those with a positive or negative	
	biochemical pregnancy test	
17	Mean endometrial thickness in patients with positive	74
	or negative clinical pregnancy	
18	Percentage of patients with an endometrial thickness of	75
	<7 mm, 7-14 mm, or > 14 mm among those with positive	
	or negative clinical pregnancy	
19	Percentage of patients with a pattern A or pattern B	76
	endometrium thickness among those with positive or	
	negative clinical pregnancy	
20	Receiver-operating characteristic (ROC) curve for	78
	prediction of biochemical pregnancy using the	
	endometrial thickness	
21	Receiver-operating characteristic (ROC) curve for	79
	prediction of clinical pregnancy using the endometrial	
	thickness	
22	Receiver-operating characteristic (ROC) curve for	8]
	prediction of biochemical pregnancy using a pattern A	
	endometrium	

23 Receiver-operating characteristic (ROC) curve for prediction of clinical pregnancy using a pattern A endometrium

82

Glossary of Terms

ART Assisted Reproductive Technology

ASAs Antisperm Antibodies

BMPs Bone Morphogenetic Proteins

BTEB1 Basic Transcription Element-Binding Protein 1

CDK Cyclin Dependent Kinase

DEDD Domain-Containing Protein

EMJ Endometrial-Myometrial Junction

EPDA Intraendometrial Power Doppler Area

FET Frozen-Thawed Embryo Transfer

FI Flow Index

Foxa2 Forkhead Box A2

HB-EGF Heparin-Binding Epidermal Growth Factor

hCG Human Chorionic Gonadotropin

Hmx3 Homeobox 3

Hoxa Homeobox A

Hurp Hepatoma Upregulated Protein

ICSI Intra-Cytoplasmic Sperm Injection

IGF Insulin-Like Growth Factor

IHH Indian Hedgehog

IL-11Rα Interleukine-11 Receptor A

IUAs Intrauterine Adhesions

IUI Intrauterine Insemination

IVF In-Vitro Fertilization

IVF-ET In-Vitro Fertilization And Embryo Transfer

MR Magnetic Resonance

NPV Negative Predictive Value

OHSS Ovarian Hyperstimulation Syndrome

PCOS Polycystic Ovarian Syndrome

PDZ Primary Decidual Zone

PI Pulsatility Index

PPV Positive Predictive Value

PZD Partial Zona Dissection

RI Resistance Index

ROC Receiver-Operating Characteristic

ROI Region-Of-Interest

SDZ Secondary Decidual Zone

SNP Single Nucleotide Polymorphism

SRC Steroid Receptor Coactivator

STAT Signal Transducer And Activator Of Transcription

TGF-**β** Transforming Growth Factor- B

VEGF Vascular Endothelial Growth Factor

VFI Vascularisation Flow Index

VI Vascularisation Index

VOCAL Virtual Organ Computer-Aided Analysis

ZD Zona Drilling

Alphabetically ordered.

Introduction

Embryo implantation depends on the quality of the ovum and endometrial receptivity. Endometrial receptivity is a temporally unique sequence of factors that make the endometrium receptive to embryonic implantation. Implantation window is a period during which the endometrium is optimally receptive to implanting blastocyst (Aboubakr et al., 2004).

Observations suggest that prospective assessment of the quality of decidualization response in the endometrium may be an important tool for predicting the likelihood of successful implantation and pregnancy outcome. Since its introduction into the clinic, ultrasound has been used widely to assess uterine features such as endometrial thickness, endometrial pattern and uterine blood flow that may be predictive of pregnancy, especially in the context of assisted reproductive technology (Abdallah et al., 2012).

A thin endometrium is one of the most difficult problems encountered in assisted reproduction every day practice. Whether a daily dose of 150 IU HCG for 7 days concomitant with estrogen administration in estrogen replacement cycles can increase the endometrial thickness and improve pregnancy outcome (Papanikolaou et al., 2013).

Precise and specific endometrial maturational development is crucial in allowing implantation following assisted reproduction. As endometrial biopsy is invasive and hormonal milieu assessment inaccurate, the need to evaluate endometrial development encouraged the use of high-resolution ultrasonography as an alternative nonof method invasive assessment for uterine receptivity. Ultrasonographic endometrial thickness measurement, endometrial pattern investigation, endometrial volume computation, uterine and subendometrial blood flow analysis by Doppler sonography are just some of the methods that we can utilize to have an idea of uterine receptivity and consequently to better predict pregnancy outcome following assisted reproductive technology cycles (Senturk and Erel, 2008).

Endometrial receptivity plays a crucial role in the establishment of a healthy pregnancy in cycles of assisted reproduction. The endometrium as a key factor during reproduction can be assessed in multiple ways, most commonly through transvaginal grey-scale or 3-D ultrasound. It has been shown that controlled ovarian hyperstimulation has a great impact on the uterine lining, which leads to different study results for the predictive value of endometrial factors measured on different cycle days. There is no clear consensus on whether endometrial factors are appropriate to predict treatment outcome and if so, which one is suited best (Heger et al., 2012).

There is a correlation between endometrial thickness measured on hCG day and clinical outcome in normal responders with GnRH antagonist administration. The pregnancy rate was lower in patients with endometrial thickness less than 7 mm compared with patients with endometrial thickness more than 7 mm (Wu et al., 2014).

Aim of the Work

To evaluate the Endometrial thickness and pattern as predictors of the ICSI success rate after Embyo Transfer.

Study question: In a woman undergoing ICSI, do the endometrial thickness and pattern affect the outcome?

Study hypothesis:

Null hypothesis: In a woman undergoing ICSI or ART, the endometrial thickness and pattern may affect the success rate after ET.

Alternate hypothesis: No effect.