ECOLOGICAL AND BIOLOGICAL STUDIES ON THE SCALE INSECT PEST, *INSULASPIS TAPLEYI* (WILLIAMS) ATTACKING MANGO TREES IN EGYPT AND ENVIRONMENTALLY SAFE METHODS FOR IT'S MANAGEMENT

By

Omaima Abd El-Fattah Hassan Balboul
B.Sc. Agriculture Science, Cairo University, 1983
Diploma in Environmental science, Department of Agricultural Science, Institute of Environmental Studies & Research
Ain Shams University, 1993
Master in Environmental Sci., Department of Agricultural Science,
Institute of Environmental Studies & Research
Ain Shams University, 2003

A Thesis Submitted in Partial Fulfillment of The Requirement for the Doctor of Philosophy In Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

ECOLOGICAL AND BIOLOGICAL STUDIES ON THE SCALE INSECT PEST, *INSULASPIS TAPLEYI* (WILLIAMS) ATTACKING MANGO TREES IN EGYPT AND ENVIRONMENTALLY SAFE METHODS FOR IT'S MANAGEMENT

By Omaima Abd El-Fattah Hassan Balboul B.Sc. Agriculture Science, Cairo University, 1983

This Thesis Towards a Doctor of Philosophy Degree In Environmental Science Has Been Approved by:

Name	e	Signature
Prof	f. Dr. Saber Fahim Mahmoud Moussa	• • • • • • • • • • • • • • • • • • • •
	Head Research of Entomology, Plant Protection	
	Research Institute, Agriculture Research Center	r
Prof	f. Dr. Faiza Mariy A. Mariy	• • • • • • • • • • • • • • • • • • • •
	Prof. Emeritus of Economic Entomology,	
	Faculty of Agriculture, Ain Shams University	
Prof	f. Dr. Mohamed Salem Abdel-Wahed	• • • • • • • • • • • • • • • • • • • •
	Prof. Emeritus of Economic Entomology,	
	Faculty of Agriculture, Ain Shams University	
Prof	f. Dr. Gamal El-Din Mahmoud Hegazy	• • • • • • • • • • • • • • • •
	Prof. Emeritus of Economic Entomology,	
	Faculty of Agriculture, Ain Shams University	

ECOLOGICAL AND BIOLOGICAL STUDIES ON THE SCALE INSECT PEST, INSULASPIS TAPLEYI (WILLIAMS) ATTACKING MANGO TREES IN EGYPT AND ENVIRONMENTALLY SAFE METHODS FOR IT'S MANAGEMENT

By

Omaima Abd El-Fattah Hassan Balboul
B.Sc. Agriculture Science, Cairo University, 1983
Diploma in Environmental science, Department of Agricultural
Science, Institute of Environmental Studies & Research
Ain Shams University, 1993
Master in Environmental Sci., Department of Agricultural Science,
Institute of Environmental Studies & Research
Ain Shams University, 2003

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy In Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

Under the Supervision of:

Prof. Dr. Gamal El-Din Mahmoud Hegazy Professor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed Salem Abdel-Wahed
Professor of Economic Entomology, Department of Plant
Protection, Faculty of Agriculture, Ain Shams University

Prof. Dr. Zeinat K. Mohammad Head Research of Entomology, Plant Protection Research Institute, Agriculture Research Center

دراسة بيئية وبيولوجية على حشرة المانجو المحارية في مصر وأساليب المكافحة الآمنة لها

رسالة مقدمة من الطالبة أومايمة عبد الفتاح حسن بلبول

بكالوريوس فى العلوم الزراعية (إنتاج زراعى) جامعة القاهرة 1983 دبلوم فى العلوم البيئية-قسم العلوم الزراعية- معهد الدراسات والبحوث البيئية جامعة عين شمس 1993 ماجستير فى العلوم البيئية- قسم العلوم الزراعية- معهد الدراسات والبحوث البيئية جامعة عين شمس 2003

لأستكمال متطلبات الحصول على درجة دكتور فلسفة في في العلوم البيئية

قسم العلوم الزراعية معهد الدراسات والبحوث البيئية جامعة عين شمس

صفحة الموافقة على الرسالة دراسة بيئية وبيولوجية على حشرة المانجو المحارية في مصر وأساليب المكافحة الآمنة لها

رسالة مقدمة من الطالبة أومايمة عبد الفتاح حسن بلبول

بكالوريوس فى العلوم الزراعية (انتاج زراعى) جامعة القاهرة 1983 دبلوم فى العلوم البيئية- جامعة عين شمس 1993 ماجستير فى العلوم البيئية (قسم العلوم الزراعية) جامعة عين شمس 2003

لأستكمال متطلبات الحصول على درجة دكتور فلسفة فى العلوم البيئية قسم العلوم الزراعية

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة:

الد / صابر فهيم محمود موسى

رنيس بحوث، قسم الحشرات القشرية والبق الدقيقى، معهد بحوث
وقاية النباتات، مركز البحوث الزراعية
الد / فايزة مرعى أحمد مرعى
استاذ الحشرات الاقتصادية المتفرغ، قسم وقاية نبات، كلية الزراعة،
جامعة عين شمس
الدين شمس
الدين محمود حجازى
الدين محمود حجازى
استاذ الحشرات الاقتصادية المتفرغ، قسم وقاية نبات، كلية الزراعة،
جامعة عين شمس

جامعة عين شمس

دراسة بيئية وبيولوجية على حشرة المانجو المحارية في مصر وأساليب المكافحة الآمنة لها

رسالة مقدمة من الطالبة

أومايمة عبد الفتاح حسن بلبول

بكالوريوس فى العلوم الزراعية (انتاج زراعى) جامعة القاهرة 1983 دبلوم فى العلوم البيئية- قسم العلوم الزراعية- معهد الدراسات والبحوث البيئية جامعة عين شمس 1993

ماجستير في العلوم البيئية - قسم العلوم الزراعية - معهد الدراسات والبحوث البيئية جامعة عين شمس 2003

لأستكمال متطلبات الحصول على درجة دكتور فلسفة فى العلوم البيئية قسم العلوم الزراعية

تحت أشراف:

أ.د / جمال الدين محمود حجازى

أستاذ الحشرات الاقتصادية ، قسم وقاية نبات، كلية الزراعة، جامعة عين شمس أ.د / محمد سالم عبد الواحد

أستاذ الحشرات الاقتصادية، قسم وقاية نبات، كلية الزراعة، جامعة عين شمس أد / زينات كمال الدين محمد

رئيس بحوث قسم الحشرات القشرية والبق الدقيقى، معهد بحوث وقاية النباتات، مركز البحوث الزراعية

ختم الاجازة أجيزت الرسالة بتاريخ / / 2010

موافقة مجلس المعهد موافقة الجامعة

2010 / / 2010 / /

ABSTRACT

Mango trees (*Mangifera indica* L.) became one of the most important fruit crops it distributed in most regions of Egypt. Mango trees are liable to be infested with many serious insect pests during growth stages including scale insects and mealy bugs. All field trails were carried out in Mango orchard located at El-Mansoria, Giza Governorate. The following objects were studied in the present work:

- 1- Biological aspects of *Insulaspis tapleyi* (Williams) were studied on mango seedling under laboratory condition, such as durations of nymphal stages for males and females, pre-oviposition, oviposition, postoviposition period, female fertility, female longevity, sex ratio, incubation period and number of generation. This study completed five successive overlapping generations on mango seedling throughout a period of one year (late August 2005 till late September 2006).
- 2- Physiological zero and heat units required to complete the development of different stages to complete one generation, (DD-degree) were determine based on rate of development under controlled condition of temperature and R.H. %
- 3- Survey study of scale insects and mealy bugs attacking mango trees in Giza Governorate revealed that nineteen scale insects and mealy bugs species belonging to four families were found on mango trees were focused on *Insulaspis tapleyi* (Williams). Ecological and biological studies.
- 4- Ecological investigation was conducted for two years (early-January, 2005 to mid-December 2006). The obtained results can be summarized as follows:

As for, nymphs, males, females, females with eggs had 4-3, 4-5, 5-4 and 4-3 annual peaks in the first and second year respectively whereas total population showed 4-3 annual peaks in the first and second year respectively. Four successive over lapping generations were recorded. Correlation coefficient "r" revealed that both day maximum and night minimum temperature has highly significant positive effect on all stages of *I. tapleyi* as well as total population during the two years of study. Daily relative humidity has insignificant effect during the two years of study.

Distribution pattern of *I. tapleyi* on the four cardinal direction of mango trees revealed that the East and North direction harbored relatively high population in the two years of study with no-significant difference between the number of insect in the four cardinal directions. The parasitoid, *Aphytis sp.* had 6 and 5 peaks in the first and second year respectively. Percent of parasitism on *I. tapleyi* ranged 7.72- 21.9 and 2.92- 29.76 in both two years respectively.

5- The evaluation of the efficiency of certain compounds belonging to different chemical groups of different mod of action namely, mineral oil, Insect growth regulators (IGRs) and organophosphors insecticide were conducted against *I. tapleyi*. Data demonstrated that all tested compound alone or mixture of (IGRs) + oil and organophosphors + oil could be used successfully to control *I. tapleyi* and significantly suppress the population of the insect. The analysis of variance yielded significant differences between the post treatment counts in all treatment while no significant differences between oil and IGR + oil were detected.

Key words: *Insulaspis tapleyi*, biology, ecology, threshold of development, thermal requirement and control

ACKNOWLEDGMENT

Firstly Ultimate thanks to "Allah" who gave me the strength, patience and ability to complete this work.

The author wishes to express her deepest gratitude and thanks to Professor, **Dr. Gamal El-Din M. Hegazy** and **Dr. Mohamed Salem Abdel-Wahed** Professor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain-Shams University, for suggesting the problem, valuable supervision, continuous assistance, constructive criticism and providing every possible facility. Special thanks are extended to **Dr. Mohamed Salem Abdel-Wahed** for the time he freely offered for revising the manuscript.

Dr. Zeinat K. Mohammad, Head of Research, Scale insects and Mealybugs Department, Plant Protection Institute, A.R.C. for her valuable supervision, suggesting the problem, continuous advice, guidance, encouragement and reviewing the manuscript.

My deep thanks to **Dr. Mona W. Ghabbour**, Head of Research, Scale insects and Mealy bugs Department, Plant Protection Institute, A.R.C. for helpful to identification the parasite.

Special thanks are also to **Dr. Nadia Abd El- Shafie Abd El- Latif.** Senior Researcher, Borers and Termites Dept. Plant Protection Institute, A.R.C. for achieving the computer statistical analysis.

Also, my deep thanks are due to all members of Taxonomy Department, Plant Protection Institute, A.R.C. for their precious help in identifying the predators.

My deep thanks are due to all staff members of scale insects and mealy bugs research Department, Plant Protection Research Institute.

My deepest gratefulness are expressed to all members of my family for their continue support and endless encouragement.

CONTENTS

Contents	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
1. Biological studies on scale insects belonging to super	
family Coccoidea	5
2. Survey of scale insects belonging to super family Coccoidea	
(Order: Homoptera) infesting economic host plant	32
3. Ecological studies on scale insects belonging to super	
Family Coccoidea	34
4. Parasite and predators attacking scale insects belonging	
to super family Coccoidea	41
5. Chemical control of scale insects	50
3. MATERIALS AND METHODES	56
I. BIOLOGICAL STUDIES	56
1. Laboratory studies on mango seedling	56
1.1. Insect source	56
1.2. Nymphal stage	58
1.3. Pre-oviposition period	58
1.4. Oviposition period	58
1.5. Post-oviposition period	58
1.6. Longevity of female and male adults	58
1.7. Egg incubation period	58
1.8. Generations	59

1.9. Fertility	59
2. Laboratory studies on potato tubers	60
2.1. Experimental design	60
2.2. Insect source	60
2.3. Assessment threshold of development	
for the different stages	61
2.4. Estimation of thermal requirements	62
2.5. Host plant suitability	62
2.6. Statistical analysis	63
II. ECOLOGICAL STUDIES	64
2. Field studies	64
2.1. Survey of scale insects and mealy bugs	
infesting mango trees in Giza, Egypt	64
2.2. Population fluctuation of <i>I. tapleyi</i> infesting	
mango trees at Giza, Governorate	65
2.2.1. Area of experiments	66
2.2.2. Sampling method	66
2.2.3. Identification of insects	66
2.2.4. Population density	67
2.2.5. Number of annual generation	67
2.2.6. Associated parasitoid	67
2.2.7. Meteorological date	68
2.2. 8. Statistical analysis	68
III. CHEMICAL CONTROL	69
3. Field evaluation of certain insecticides against	
I. tapleyi on mango trees	69
3. 1. Experiment area	69

3. 2. Insecticides used	69
3. 3. Experimental design	70
3. 4. Sampling	70
3. 5. Statistical analysis	71
4. RESULTS AND DISCUSSION	72
I. BIOLOGICAL STUDIES	72
Laboratory studies on mango seedling	72
1. Description and behavior of different	
immature stage	72
1.1. The egg stage	72
1.2. The nymphal stage	72
1.3. Female instar nymphs	73
1.4. Adult female	74
1.5. Male instar nymphs	74
1.5.1. 1 st instar nymph	74
1.5.2. 2 nd instar nymph	74
1.5.3. 3 rd instar nymph (pre-pupa)	75
1.5.4. 4 th instar nymph (pupa)	75
1.5.5. Adult male	75
2. Duration of different developmental stages	76
2. 1. Egg incubation period	76
2. 2. Duration of the nymph stage	80
2.2.1. Female first instar nymphs	80
2.2.2. Female second instar nymphs	81
2.2.3. Male instar nymph	82
2.2.4. 3 rd instar nymph (pre-pupa)	

and 4 th instar nymph (pupa)	83
2.3. Female longevity	84
2.3.1. The pre–oviposition period	84
2.3.2. Oviposition period	86
2.3.3. Post-oviposition period	87
2.4. Adult female longevity	87
2.5. Sex ratio.	88
2.6. Fertility	90
2.7. Number of annual generations of <i>I. tapleyi</i>	
under laboratory conditions	90
Laboratory studies on rearing I. tapleyi on potato tubers	92
2. Effect of different constant temperature on the duration	
of the developmental stages of I. tapleyi	92
2. 1. Egg stage	92
2. 1. 1. Incubation period and threshold of development	93
2. 1. 2. Female nymphal stage	96
2. 1. 3. Pre-oviposition period	100
2. 1. 4. Ovi-position period	103
2. 1. 5. Adult female longevity	106
2. 1. 6. Female longevity	109
2. 1. 7. Male nymphal stage	112
II. ECOLOGICAL STUDIES	116
3.1. Survey of scale insects and mealy bugs attacking	
Mango trees in Giza Governorate	116
3. 2. Systematic position and synonymy	118
3. 2. 1. Ecological studies	118
3 2 2 Distribution of Insulasnis tanlevi	119

3. 2. 2. 1. Seasonal occurrence of different stages	
on mango trees	119
3. 2. 2. Nymphal stage	119
3. 2. 2. 3. Male nymphal stage (pre pupa & pupa)	
and adult males	126
3. 2. 2. 4. Adult females	128
3. 2. 2.5. Adult females with eggs	130
3. 2. 2. 6. Total population of <i>I. tapleyi</i>	133
3. 2. 2.7. Number of annual field generations	135
3. 2. 3. Effect of some weather factors on the	
population activity of <i>I. tapleyi</i>	141
3. 2. 3. 1. Effect of day maximum temperature	142
3. 2. 3. 2. Effect of night-minimum temperature	147
3. 2. 3. 3. Effect of daily relative humidity	147
3. 2. 3. 4. The combined effect of the three weather	
factors on the activity of I. tapleyi	148
3. 2. 4. Distribution of <i>I. tapleyi</i> on cardinal directions	149
3. 2. 5. Distribution of the parasitoid <i>Aphytis sp.</i>	153
3. 2. 5.1. Seasonal occurrence	153
3. 2. 5.2. Percent of parasitism	159
3. 2. 5. 3. Effect of host on the activity of parasitoid	160
III. Field evaluation of certain insecticides against <i>I. tapleyi</i>	
on mango trees at Mansoria, Giza Governorate	165
5. SUMMARY	170
6. CONCLUSION.	
7. REFERENCES	

LIST OF TABLES

Table Pag	
1	-Duration of the different developmental stages of female <i>I.tapleyi</i> on mango seedlings throughout five successive generations under laboratory condition, during 2005-2006 under the prevailing means of temperatures and relative humidity
2	-Duration of the different developmental stages of male <i>I. tapleyi</i> on mango Seedlings throughout five successive generations under laboratory condition, during 2005-2006 under the prevailing means of temperatures and relative humidity
3	-The sex ratio of <i>I. tapleyi</i> on mango seedlings under laboratory condition throughout five successive generations (2005-2006), under different temperature and relative humidity
4	-Mean egg incubation period, rate of development and thermal units of <i>I. tapleyi</i> at different constant temperature
5	-Mean duration of nymphal stage, rate of development and thermal units of <i>I. tapleyi</i> at different constant temperature
6	-Mean pre-oviposition period, rate of development and thermal units for <i>I. tapleyi</i> at different constant temperature
7	-Mean oviposition period, rate of development and thermal units of <i>I. tapleyi</i> at different constant temperature
8	-Mean duration of adult female longevity, rate of development and thermal units for <i>I. tapleyi</i> at different constant temperature