Correlation of Venous Congestion to Kidney Function in Patients with Decompensated Heart Failure

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

 $\mathcal{B}y$

Sara Mohammed Mohammed Amr

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.Ch$

Faculty of Medicine – Alexandria University

Supervised by

Prof. Abd El-Basset El-Shaarawy Abd El-Azeem

Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Adel Gamal Hassanein

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Haitham Ezzat Abd El-Aziz

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2015

تقييم العلاقة بين الاحتقان الوريدي وتأثيره على وظائف الكلى في المرضى الذين يعانون فشل لاتعويضي في وظائف القلب

روالا

توطئة للحصول على درجة االماجستير في أمراض الباطنة العامة

مقومة من

الطبيبة/ ساره محمد محمد عمرو بكالوريوس الطب و الجراحة كلية الطب – جامعة الأسكندرية

فُنُ (نُرِ (ن

أ.د/عبد الباسط الشعراوي عبدالعظيم

أستاذ أمراض الباطنة و الكلى كلبة الطب جامعة عين شمس

د /عادل جمال حسنين

أستاذ مساعد أمراض القلب كلية الطب - جامعة عين شمس

د/هيثم عزات عبد العزيز

مدرس أمراض الباطنة والكلى كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٥

Acknowledgement Thank to Allah

For accomplishment of this work

I wish to express my deepest gratitude to all those who assisted me to complete this work.

I am greatly indebted and grateful to **Prof. Abd El-Basset El**Shaarawy Abd El-Azeem, Professor of Internal Medicine and
Nephrology, Faculty of Medicine, Ain Shams University, for his
unlimited help and continuous insistence on perfection, without his
constant supervision, this thesis could not have been achieved in its
present form.

I would like to express my deepest gratitude and appreciation to **Dr. Adel Gamal Hassanein**, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his supervision and encouragement and for his support throughout the work.

I would like to thank the sincere help, guidance and supervision of **Dr. Heitham Ezzat Abd El-Aziz**, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for worthful suggestions and wise guidance created this thesis.

Last but not least, No words can express my affection and gratitude to my dear Husband, my Family and my Friends for their support, assistance and belief in my work and in me,

Sara Mohamed Amr

Contents

Subject	Page No.
Introduction	1
Aim of The Work	5
Chapter 1: Cardiorenal Syndromes	6
Chapter 2: Venous Congestion and Kidney Function	
in Patients with Decompensated Heart Failure	35
Patients And Methods	58
Results	61
Discussion	80
Summary and Conclusion	88
Limitations and Recommendations	93
References	94
Arabic Summary	

*I*ist of Abbreviations

Abb.	Full term
AII	:Angiotensin II
ACE	:Angiotensin converting enzyme
ACS	:Acute coronary syndrome
ADH	:Antidiuretic hormone
ADHF	:Advanced decompensated heart failure
ADHERE	:Acute decompensated heart failure national registry
ADMA	:Asymmetric dimethyl arginine
ADQI	:Acute dialysis quality initiative
AHF	:Acute heart failure
AKI	:Acute kidney injury
AKIN	:Acute kidney injury network
ANP	:Atrial natriuretic peptide
ARB	Angiotensin receptor blocker
BA	:Bronchial asthma
BP	:Blood pressure
BNP	:Brain natriuretic peptide
BUN	:Blood urea nitrogen
\mathbf{BW}	:Body weight
CAD	:Coronary artery disease
CBC	:Complete blood count
CHF	:Congestive heart failure
CHOIR	:Correction of Hemoglobin and Outcomes in Renal Insufficiency
CD	:Cluster of differentiation
CI	:Cardiac index
CO	:Cardiac output
CKD	:Chronic kidney disease
Cr	:Creatinine
CrCl	:Creatinine clearance
CRS	:Cardiorenal syndrome

Abb. Full term

CVP :Central venous pressure
CVS :Cerebrovascular stroke

CysC :Cystatin C

DE :Diuretic efficacy

DCs :Dendritic cells

DM :Diabetes mellitus

DOSE trial :Diuretic Optimization Strategies Evaluation trial

DVT :Deep vein thrombosis

EAFV :Effective arterial filling volume

ESRD :End stage renal disease

ESCAPE :Evaluation Study of Congestive heart failure and Pulmonary

trial Artery Catheterization Effectiveness trial **E GFR** :Estimated Glomerular Filtration Rate

EF :Ejection fraction
g/dL :Gram per deciliter
g/L :Gram per liter

Hb :Hemoglobin concentration

HF :Heart failure **HTN** :Hypertension

IAP :Intra-abdominal pressure

ICU :Intensive care unit IHD :Ischemic heart disease

IPF :Interstitial pulmonary fibrosis

IU :International unit

IV :Intravenous

JVP :Jugular venous pressure

K :Potassium

KDIGO :Kidney disease improving global outcome

Kg :Kilogram

KIM :Kidney injury molecule

L :Liter

LVEF :Left ventricular ejection fraction

MAP : Mean arterial pressure

MDRD Modification of Diet in Renal Disease:

Abb. Full term

Mg :Milligram

mg/kg :Milligram per kilogram

MHz :Mega hertz

MI :Myocardial infarction

Ml :Milliliter

mm Hg :Millimeter mercury mmol/L :Millimol per liter

MSNA : Muscle Sympathetic Nerve Activity

MUSIC :Multi-Sensor Monitoring in Congestive Heart Failure

NADH :Nicotinamide adenine dinucleotide

NADPH :Nicotinamide adenine dinucleotide phosphate (reduced form)

Na :Sodium

ng/ml :Nanogram per milliliter

NAG :N-acetyl-beta-D-glucosaminidase

NGAL :Neutrophil gelatinase associated lipocalin

NO :Nitric oxide

NKF : National kidney foundation

NSAID :Non steroidal anti inflammatory drugs

NYHA : New York Heart Association Functional Classification

OR :Odd ratio

Pg/ml :Picogram per milliliter

PCWP :Pulmonary capillary wedge pressure

PARKIS : Parkinsonism

PVD :Peripheral vascular disease

PEEP :Positive end-expiratory pressure

RAP :Right atrial pressure

RAAS :Renin - angiotensin - aldosterone system

RBF :Renal blood flow

RNS :Reactive nitrogen species
ROS :Reactive oxygen species

RVSP :Right ventricular systolic pressure

RIFLE :Risk, Injury, Failure, Loss of Kidney Function, and End-stage

Kidney Disease

RV :Right ventricle

Abb.	Full term
SD	:Standard deviations
S.cr	:Serum creatinine
SNS	:Sympathetic nervous system
SOAP	:The Sepsis Occurrence in Acutely ill Patients
SOD	:Superoxide dismutase
TNF	:Tumor necrosis factor
TREAT	:Trial to Reduce Cardiovascular Events with Aranesp
VAD	:Ventricular assist device
WRF	:Worsening renal function

\mathcal{I} ist of Tables

Table No	Title	Page
	Review of literature	
Table (1)	ADQI classification system of the cardiorenal syndrome	9
Table (2)	Different current AKI definitions and WRF criteria	19
Table (3)	The major studies linking venous congestion and WRF in patients with heart failure	43
Table (4)	Significant predictors of the occurrence of WRF in different studies	47
	Results	
Table (1)	The gender distribution in the study population	61
Table (2)	The range of age in the study population	61
Table (3)	Frequency and percentage of comorbidities and	(2
Table (4)	medications used among the study population Estimated GFR of studied patients on admission	62
Table (4)	CVP and MAP changes over the study period	63
		63
Table (6)	Body weight and echocardiographic data of the subjects over the study period	64
Table (7)	Laboratory changes of the patients over the study period	65
Table (8)	Percentage of patients who developed WRF during the study period	65
Table (9)	Comparison of age, sex and smoking history between	
Table (10)	patients who developed WRF and who did not Comparison of comorbidities and medication use between patients who developed WRF and who did	66
	not	67
Table (11)	Comparison between baseline measures between patients who developed WRF and who did not	68
Table (12)	Comparison of baseline Mean Central Venous	
	Pressure and echocardiographic data between patients	60
Table (13)	who developed WRF and who did not	69
	Arterial Pressure at baseline between patients who developed WRF and who did not	70

Table No	Title	Page
Table (14)	Comparison of the mean dose of furosemide and different hemodynamic variables stratified by	
Table (15)	development of WRF at the end of the study period Comparison of the Laboratory Parameters between patients who developed WRF and who did not at the	
Table (16)	end of the study	
	WRF and who did not	79

\mathcal{I} ist of Figures

Figure No	Title	Page
	Review of literature	
Figure (1)	Predisposing factors for CRS	12
Figure (2)	CRS type 1	25
Figure (3)	Cellular types in CRS type 1	28
Figure (4)	Schematic of CRS type 4	32
Figure (5)	Secondary cardiorenal syndromes (type 5)	34
Figure (6)	Fluid balance and blood pressure management window	45
Figure (7)	Pathogenesis of CRS type 1	49
Figure (8)	Cardiorenal interactions in the pathophysiology of cardiorenal syndrome	51
Figure (9)	Venous congestion, endothelial activation, and renal dysfunction - the vicious cycle	53
	Results	
Figure (1)	Correlation between Baseline CVP and WRF at follow up	71
Figure (2)	Correlation between baseline eGFR and WRF at follow up	72
Figure (3)	Correlation between baseline EF and WRF at follow up	73
Figure (4)	Pattern of changes of Mean eGFR, Mean EF and Mean CVP on day 0 and day 6 in patients without WRF	75
Figure (5)	Pattern of Changes of Mean eGFR, Mean EF and Mean CVP on Day 0 and day 6 in patients with WRF	76
Figure (6)	Pattern of relative contribution of CVP and EF to eGFR at follow up	77

Introduction

The **Heart** and the **kidneys** share responsibility for hemodynamic stability maintaining and end-organ perfusion through a tight-knit relationship that controls output, volume cardiac status. and vascular tone. Connections between these organs ensure that subtle physiologic changes in one system are tempered by compensation in the other. As such, hemodynamic control remains stable through a wide range of physiologic conditions (Viswanathan and Gilbert, 2011).

The interaction between the heart and the kidneys is modulated by the cardiorenal axis. The sympathetic nervous system (SNS), renin-angiotensin-aldosterone system (RAAS), and arginine vasopressin (AVP) are the primary neurohormones that maintain the integrity of effective arterial blood volume, hence the cardiorenal axis (*Blankstein and Bakris*, 2008).

Increasingly, heart-kidney interactions are being recognized as fundamentally important in the prognosis of each organ individually as well as the prognosis of the overall patient (*Ronco et al., 2008a*), as both acute and chronic heart failure may push the kidneys beyond their ability to maintain glomerular filtration, regulate fluid and electrolytes, and clear metabolic waste.

Additionally, kidney disease and heart failure have been suggested not to represent single clinical entities but rather to represent manifestations of a broader vascular injury associated with aging that affects multiple organs (*Triposkiadis et al.*, 2012).

The incidence of heart failure with preserved ejection fraction (HFPEF) remains enigmatic. Epidemiology suggests that it is common (*Bhatia et al.*, 2006), and is reported to include about 50% of the general heart failure population (*Fonarow et al.*, 2007) while the prevalence of HFPEF is still increasing over the last years when compared to the prevalence of heart failure with reduced ejection fraction (HFREF) (*Bhatia et al.*, 2006). Its prevalence is higher in the elderly (*McDonald*, 2008).

Acute kidney injury may complicate one-third of heart failure admissions resulting in a threefold increase in length of stay, a greater likelihood for hospital readmission, and a 22% higher mortality rate (*Wencker*, 2007).

Renal dysfunction is one of the most important comorbidities in patients with chronic HF and is accentuated, or becomes more evident, during episodes of acute decompensated heart failure (ADHF) (*Damman et al.*, 2014).

The special relationship and the interdependence of the kidneys and the heart are well recognized. The manner in which dysfunction of one organ affects the other has recently led to the characterization of the cardiorenal syndrome (CRS). CRS is a complex disease in which heart and kidney are simultaneously affected and their deleterious effects are reinforced in a feedback cycle, with

accelerated progression of renal and myocardial damage (*Ronco et al.*, 2010a).

While it is true that decreased forward flow as a result of decreased cardiac output in decompensated heart failure can cause acute deterioration in kidney function, there are several reasons why this mechanism fails to completely explain the development of the CRS. From a broader point of view, taking into account the dynamic and close interplay between heart and kidney, the CRS has been recently viewed as "a pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ" (*Ronco and Maisel 2010*).

For quite some time, venous congestion has been suspected as a cause of renal dysfunction (RD). Notably, in experiments dating back to the 1860s, it was shown that partial occlusion of the renal vein led to an immediate decline in renal blood flow, glomerular filtration rate (GFR), and sodium excretion, with resolution of the abnormalities after relief of the congestion (*Gnanaraj et al.*, 2013). Furthermore, abdominal congestion has been associated with CRS (*Verbrugge et al.*, 2013).

The sequence of events shown in studies in human subjects have also demonstrated that increased central venous and increased jugular venous pressure (JVP) on examination are associated with worsening kidney function (*Damman et al.*, 2009) as well as increased mortality (*Mullens et al.*, 2009).