

كلية الهندسة

قسم هندسة القوى الميكانيكية

	خالد أسامة محمد يـس	اسم الطالب
ريشة تربينة هوائية متصلة بالشبكة في	: دراسة تاثير الهواء علي	عنوان الرسالة نطاقها المرن
ي الهندسة الميكانيكية (شعبة قوى ميكانيكية)	ماجستير العلوم الهندسية في	اسم الدرجة:
	<u>:</u>	لجنة الاشراف
	.م.	ا <u>.</u> د/ زكريا غني
		د/ ایة دیاب
تاريخ البحث : ٢٠١٥/١٢/١٦		
	<u>:</u> L	الدراسات العلي
ﻪ ﺑﺘﺎﺭﯾﺦ:/	اجيزت الرسال	ختم الإجازة:
موافقة مجلس الجامعة:	الكلية :	موافقة مجلس
	/	/
(2015)	القاهر ة-	

كلية الهندسة

قسم هندسة القوى الميكانيكية

الموافقة على المنح

دراسة تاثير الهواء علي ريشة تربينة هوائية متصلة بالشبكة في نطاقها المرن

إعداد

خالد أسامة محمد يس

لجنة الحكم

التوقيع	الاسم
	أ.د/ زكريا غنيم قسم هندسة القوى الميكانيكية، جامعة عين شمس
	أ.د/ نبيل عبد العزيز قسم هندسة القوى الميكانيكية، جامعة عين شمس
	أ.د/ شرام أفيزاد <i>ي</i> جامعة بورجوني

كلية الهندسة قسم هندسة القوى الميكانيكية

دراسة تاثير الهواء علي ريشة تربينة هوائية متصلة بالشبكة في نطاقها المرن

رسالة مقدمة للحصول على درجة ماجستير العلوم الهندسية في هندسة القوى الميكانيكية

اعداد

خالد أسامة محمد يس

حاصل على بكالوريوس العلوم هندسة القوى الميكانيكية

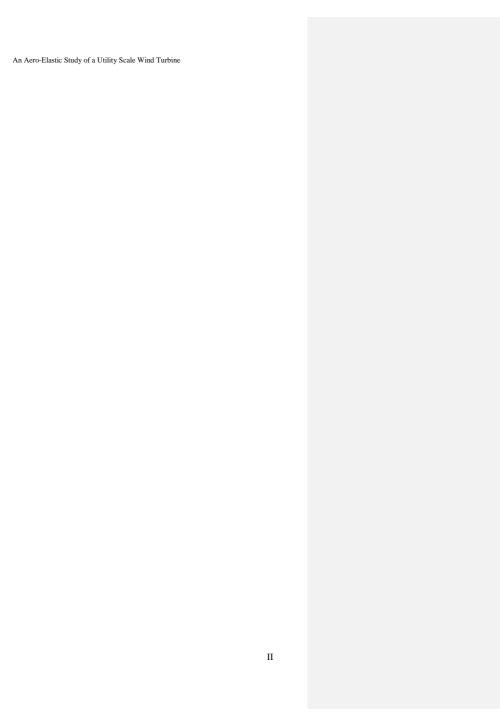
كلية الهندسة،جامعة عين شمس ، سنة ٢٠١٠

المشرفون أ.د/ زكريا غنيم د/ اية دياب القاهرة-(٢٠١٥) An Aero-Elastic Study of a Utility Scale Wind Turbine

Statement

This thesis is submitted in partial fulfilment of the Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.


Khaled Osama Mohammed Yassin

Signature

.....

Date: 26 December 2015

I

Researcher Data

Name : Khaled Osama Mohammed Yassin

Date of birth : 16/06/1988

Place of birth : UK

Last academic degree : B.Sc.

Field of specialization : Mechanical Power Engineering

University issued the degree: Ain Shams University

Date of issued degree : 24/07/2010

Current job : Mechanical Engineer

An Aero-Elastic Study of a Utility Scale Wind Turbine IV

Thesis Summary

This work aims to optimize the aerodynamic and structural design of the 5MW *NREL* wind turbine and a site specific derivative minimizing the levelized cost of energy, *LCOE*, generated from these two wind turbine designs.

The first step was the design of a site specific wind turbine. This design was achieved by replacing the primary and tip sections' airfoil profiles with *NREL S*-family airfoils for its low sensitivity to surface contamination. The second step was optimization of these two wind turbine designs to Zaafarana site wind conditions. This optimization was carried out using a genetic algorithm developed in *MATLAB* coupled with *FAST* modularization framework.

This approach resulted in decreasing the *LCOE* of the baseline 5MW *NREL* wind turbine by 2.7% due to using airfoil with low-sensitivity to dust contaminationand the optimization of the designs to site-specific wind conditions.

Keywords: wind turbine, optimization, levelized cost of energy, genetic algorithm, surface contamination, site-specific design.

Acknowledgment

In the beginning, I want to thank Allah Almighty for his grace that allowed me to complete this work in this form.

Also I want to thank my family for their great support during the preparation of this research and this work.

Also I want to thank my supervisor Prof. Dr. Zakaria Ghoniem for his experience, vision, ideas and contribution in this work.

In the end, I would like to thank my supervisor Dr. Aya Diab for her effort, dedication and bright ideas that were the main reasons that made this work possible.

January 2016


TABLE OF CONTENTS

СНА	PTER 1
INTI	RODUCTION2
1.1.	Background2
1.2.	Renewable Energy Resources4
1.2	,
1.2	
1.2	
1.2	
1.2	.5. Wind Energy 6
1.3.	Wind Energy Growth6
1.4.	Wind Turbines' Design Developments7
1.5.	Wind Turbine Optimization8
1.5	.1. Aerodynamic Performance of Wind Turbines9
1.5	.2. Structural Properties of Wind Turbine Blades
1.5	.3. Optimization Algorithms
1.6.	Problem Description
1.7.	Thesis Outline
СНА	PTER 2
LITI	ERATURE SURVEY16
2.1.	Mathematical Modeling of FSI Problems
2.2.	Dust accumulation and erosion of airfoils
2.3.	Optimization of Composites using Different GA Techniques
	V11

CHA	PTER 3	39
MAT	THEMATICAL MODEL OF SIMULATION	39
3.1.	Aerodynamic Model	39
3.1	•	
3.1		
3.1	.3. Wind Turbine Power Curve	44
3.1		
3.1	.5. Aerodynamic design of 5MW wind turbine	46
3.1	.6. Low Sensitivity to Surface Contamination	47
3.1	.7. Aerodynamic Optimization of Wind Turbine Blade	49
3.1	.8. Bezier Curve	49
3.2.	Structural Model	51
3.2		
3.2	.2. Mechanical loads on wind turbine blades	51
3.2	.3. Composite Materials	54
3.2		
3.2	.5. Classical Lamination Theory (CLT)	57
3.2	.6. Structural Design of the 5MW Wind Turbine	63
3.3.	Software Used in Simulation Process.	65
3.3	.1. Preprocessors	65
3.3	.2. Simulators	66
3.4.	Models Integration for Optimization	71
СНА	PTER 4	73
ОРТ	IMIZATION USING GENETIC ALGORITHM	73
4.1.	Introduction	73
4.2.	Gradient Based Optimization Techniques	74
4.3.	Heuristic Based Optimization Techniques	74
4.3		
4.3	.2. Ant Colony Optimization (ACO)	75
4.3	8(-)	
4.3	.4. Genetic Algorithm (GA)	76

An Aero-Elastic Study of a Utility Scale Wind Turbine

4.4.	Optimization of the 5MW Wind Turbine	78
СНА	PTER 5	80
RES	ULTS AND DISCUSSION	80
5.1.	Introduction	80
5.2.	Design of the S-airfoil family blades	80
5.3.	The optimization results of the NREL 5MW and S-airfoil Blade	82
СНА	PTER 6	89
CON	CLUSIONS AND FUTURE WORK	89
6.1.	Conclusions	89
6.2.	Future Work	90
REF	ERENCES	91

LIST OF FIGURES

Figure 1-1. Global CO ₂ Emissions (Source: Global Carbon Atlas)
=
Figure 1-2. Global Energy Consumption (Source: International Energy
Statistics)
Figure 1-3. Average Crude Oil Prices (Source: Crude Oil Price History
Chart)4
Figure 1-4. Global annual installed and cumulative installed capacity 6
Figure 1-5. Wind turbine size growth (Source: Cost Analysis of a Wind
Turbine, 2013)
Figure 1-6. Turbine components' cost percentages (Source: Fingersh et al.,
2007)
Figure 1-7. Aerodynamic forces and angle in BEM theory (Source: Hansen,
2008)
Figure 1-8. Composite laminates and fiber directions (Source: Jones, 1998)
11
Figure 1-9. Schematic of the main procedure of a genetic algorithm
Figure 2-4. Twist angles' convergence (Lee et al., 2012)
Figure 2-5. C_p vs wind speed of both baseline and adaptive blades (Source:
Maheri et al., 2007)
Figure 2-6. Flowchart of the optimization program (Source: Xiong et al.,
2007)
Figure 2-7. Optimized chord lengths and twist angles of the NREL 5MW
wind turbine.(Source: Vesel and McNamara, 2014)
Figure 2-8. Ply layups of (a) the spar flanges, (b) the region on the fore side
of the spar, and (c) the regions on the aft side of the spar Purple lines
represent 0 carbon fiber, blue +45 glass fiber, black 00 glass fiber (Source:
Cox and Echtermeyer, 2012)24
Figure 2-9. Different stations along the blade and tower to show the
geometry and the approximate location of each station. Station 1 of the blade
defines the root and station 20 the tip. Station 1 of the tower defines the
interface level and station 22 (Ashuri et al., 2014)
Figure 2-10. Overview of the multi-disciplinary optimization process
(Source: Bottasso et al., 2011)