DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia

Thesis

Submitted in partial fulfillment of master degree in clinical and chemical pathology

By

Ghada Sayed Mohammed Abu Taleb

M.B. B.Ch, Cairo University

Supervised by

Dr. Nancy Mohammed El Gindi

Assistant professor of Clinical and chemical Pathology
Faculty of Medicine Cairo University

Dr. Noha Mohammed Hosny Shahin

Assistant professor of Clinical and chemical Pathology
Faculty of Medicine Cairo University

Dr. Zainab Ali Hassan El saadany

Lecturer of Clinical and chemical Pathology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2009

Acknowledgement

First of all, I would like to thank God for his grace and mercy and for giving me the effort to complete this work.

I would like to express my deepest gratitude and greatest respect to Assistant Professor **Dr. Nancy El Gindi** Assistant Professor of Clinical and Chemical Pathology, Cairo University, under her supervision I had the honor and pleasure to proceed with this work. Her constant guidance, encouragement and foresight made all the difference.

I would like to express my sincere thanks to Assistant Professor **Dr.**Noha Shahin, Assistant Professor of Clinical and Chemical Pathology,
Cairo University, for her continuous guidance, encouragement, creativity
and offering me years of technical experience.

My deepest appreciation goes to **Dr. Zainab Ali**, Lecturer of Clinical Pathology, Cairo University, for her supervision advice, effort and for allowing me a free access to her precious time.

I would also like to express my deep gratitude to **Dr. Iman Abd El-Mohsen**, Lecturer of Clinical Pathology, Cairo University and **Dr. Reham Emad**, Lecturer of Clinical Pathology, Cairo University for their cooperation and continuous support during the accomplishment of this work.

Special thanks goes to all patients who were subjected to this study for their help and co-operation without which this work could not be possible.

Ghada Sayed Mohammed Abu Taleb

Dedication

Love and devotion are

The sources of life.

- My dear parents
- My beloved, sincere husband · 🔊 🗓 •
- My sweet daughter Rawan 🔊 🗓 .
- My dear sister and brothers · 🔊 🦥 : •
- My dear friends 🔊 🗓 •
- •♥ •I dedicate my work & my whole life to you

Contents

	Title	page No.
•	Introduction and aim of the work	. 1
•	Review of literature	. 4
	 Acute lymphoblastic leukemia 	4
	■ DNA repair genes	. 42
•	Patients and Methods	. 90
•	Results	. 111
•	Discussion	. 145
•	Summary and Conclusion	. 157
•	References	162
•	Arabic summary	**

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common pediatric caner. (XRCC1) plays an important role in base excision and single-strand break repair, as a scaffold protein that brings together proteins of the DNA repair complex, and appears to be a candidate for cancer risk. However, studies on the association between polymorphisms in this protein and cancer have yielded conflicting results Genetic polymorphisms in this gene may contribute to the susceptibility to childhood ALL. The most common 3 polymorphisms are at codon 194 (Arg) to (Trp) (Arg194Trp), at codon 280 at codon 399 (Gln) (Arg399Gln).. We studied their (Arg280His) and effect on 30 ALL patients and 30 healthy controls regarding the incidence, toxicity and response to treatment using polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP). codon 194 Trp genetypes were found to contribute a significantly increased risk of ALL by 15 fold (OR=15.5, 95%CI=3.8-63.4,P-value<0.0001).Treatment toxicity with codon 399 polymorphism showed a favorable outcome than wild type (p-value 0.04).

Key Words:

- DNA repair gene
- XRCC1 polymorphisms in childhood acute lymphoblastic leukemia

List of Abbreviations

· *	A	adenine base
·	a PTT	· activated partial thromboplastin time
* *	ACP	acid phosphatase
' * 		Acute lymphocytic leukemia or acute lymphoblastic
*	ALL	leukemia.
;	ΛΙΙ·ΜV+	ALL with Myeloid Antigen Expression.
· *		Acute myeloid leukemia.
· *	AP	apurinic or apyrimidinic
· *		· endonuclease 1
; <u>.</u>	Arg	arginine
; ' *		adenosine triphosphate
÷ *		Biphenotypic acute Leukaemia.
*		base excision repair
· *		base pairs
· *		breast cancer susceptibility protein-1
; *		breast cancer susceptibility protein-2
;·	C	cytosine base
· *	c Ig	cytoplasmic immunoglobulin
· *	CALL	Common acute lymphoblastic leukemia
; <u>.</u>		Complete blood count
* *	CD	Cluster of differentiation
<u></u>	CK2	Cycline Kinase 2
; *	CNS	Central nervous system
; ' *	CSF	Cerebrospinal fluid
· *	CT	Computed tomography
· *	DIC	Disseminated intravascular coagulation
· *		· Deoxyribonucleic acid
· *	dNTPs	Doxyribonucleosides triphosphates
*	dNTPs	Doxyribonucleosides triphosphates
*	···-··-	DNA repair capability
· *		double-stranded break
: *	EBV	Epstein-Barr virus
: *	EDTA	Ethylenediamine tetra-acetic acid
· *	EGIL	European Group for the Immunological Classification of
		Leukemia
: * :	EM	Electron microscopy
*	EMS	Ethylmethane sulphate

*	FA	Fanconi anemia
· *	FAB	French American British
*	FANCG	Fanconi's anemia group G
· *	FISH	fluorescence in situ hybridization
*	G	guanine base
· · *	Gln	glutamine
· · *	His	histadine
. *	HLA-DR	Human leukocytic antigen-DR
		·
*	HNPCC	hereditary nonpolyposis colorectal cancer
*	HR	· Homologous repair
: * :	HTLV-1	Human thymic leukemia virus -1.
. * 	Ig	Immunoglobulin
	Kda	kilo Dalton
*	LDH	Lactate dehydrogenase
*	Lig III	DNA ligase III
: * :	LN	Lymph nodes
*	MDR	multiple drug resistance gene
*	MLL	mixed lineage leukemia gene
* - *	MLL	mixed lineage leukemia gene
• • *	MMC	Mitomycin C
· · *	MoAb	Monoclonal antibodies
*	MPO	Myeloperoxidase
: *	mtDNA	mitochondrial DNA
* * 	Myc	Avian myelomytosis gene
*	NBS	Nijmegen breakage syndrome
*	nDNA	nuclear DNA
· *	nDNA	nuclear DNA
: * :	NER	mismatch repair
*	NHEJ	Non-homologous end joining
* *	N <mark>SE</mark>	non specific esterase
*	NSE:	non specific esterase
*	NTD	N- Terminal domain
*	OGG1	8-oxoguanine DNA glyeosylase
*	PARP	Poly (ADP-ribose) polymerase
*	PAS	Periodic acid-schiff
*	PCNA	proliferating cell nuclear antigen

* * •	PCR-RFLP	Polymerase chain reaction-restriction fragment length polymorphism
: *	Plts	Platelets
: *	PNK	polynucleotide kinase
*	роІ β	DNA polymerase β
*		prothrombin time.
: *	Rad 52	Recombination protein Rad 52
*	RE	Restriction enzymes
*	RNA	Ribonucleic acid
*	ROS	reactive oxygen species
: : *	RT-PCR	reverse- transcriptase polymerase chain reaction
*	SBB	sudan black B
*	SCE	sister-chromatid exchange
*	SD	Standard deviation
: *	SNPs	single nucleotide polymorphisms
· · *	SSB	single-stranded break
· : *	T	thymine base
· · *	TFIIH	Transcription Factor IIH
*	Trp	tryptophan
· ' *	U	uracil base
: *	UV	ultraviolet
*	V (D) J	variable-diversity-joining segment rearrangement of heavy chain in immunoglobulin gene KU70 XRCC6
*	XPD	Xeroderma pigmentosum, group D
* *	XRCC1	X-ray repair complementing defective repair in Chinese hamster cells 1

List of Tables

Table	Table Title	Page
No.		No.
1	Factors predisposing to childhood leukemia.	10
2	Morphologic (FAB) Classification of Acute Lymphocytic	12
	Leukemia.	
3	Cytochemical stains in relation to FAB classification.	15
4	Flow chart for Immunophenotyping of Acute Leukemia.	18
5	Score for biphenotypic acute leukemia.	22
6	WHO Classification of ALL	23
7	Selected karyotypic changes in acute lymphoblastic	26
	leukemia and associated features	
8	Prognostic factors in Acute Lymphoblastic leukemia.	38
9	Laboratory data of ALL cases.	113
10	Morphology and immunophenotypes of ALL cases.	114
11	Genotype frequencies of XRCC1 in Acute	118
	Lymphoblastic Leukemia patients and control by PCR-	
	RFLP.	
12	Distribution of XRCC1 genotypes among the control	122
	group.	
13	Combined polymorphism among cases.	123
14	Distribution of XRCC1 polymorphism variants among	126
	ALL and control subjects stratified for sex.	100
15	FAB classification and immunophenotypes in relation	128
4.6	to codon 280 genotypes.	120
16	Response to therapy.	130
17	Comparison between codon 280 variants according to	132
10	Outcome. Comparison between ander 200 varients according to	125
18	Comparison between codon 399 variants according to outcome.	135
19	Comparison between codon 194 variants according to	138
19	outcome.	136
20	Comparison between codon 280 variants according to	140
	liver toxicity.	110
21	Comparison between codon 399 vartiants according to	141
	liver toxicity.	
22	Comparison between codon 194 vartiants according to	141
	liver toxicity.	
23	XRCC1 Gene polymorphism in control group	143
24	Clinical, laboratory and genotypic data of case.	144

List of figures

Fig.	Figure Title	Page
1	I 1 Type of AII	No. 13
2	L1 Type of ALL. L2 Type of ALL.	13
3	L3 Type of ALL.	14
4		21
5	Acute Biphenotypic Leukemia. Bone marrow aspiration.	31
6	Precursor B-cell ALL.	32
7		32
8	Precursor T-cell acute lymphoblastic leukemia.	44
9	The chemical structure of DNA	58
10	Base excision repair	
11	Nucleotide Excision Repair	61
	Mismatch Repair (MMR).	63
12	Double Strand Break (DSB) Repair.	69
13	DNA repair rate is an important determinant of cell pathology.	70
14	Coordinative role of XRCC1 protein in BER.	82
15	Clinical data for ALL patients.	112
16	Distribution of Morphology and immunophenotypes of ALL	115
15	cases.	110
17	Genotype frequencies of XRCC1 in Acute Lymphoblastic	118
10	Leukemia patients and control by PCR-RFLP.	110
18	(A) RFLP analysis of XRCC1 codon194 PCR	119- 120
	(B) Codon 280 genotype analysis	120
10	(C) RFLP Analysis of XRCC1 codon 399 PCR product.	122
19	Combined polymorphism among cases.	123
20	Distribution of XRCC1 polymorphism variants among ALL	127
21	and control subjects stratified for sex.	120
21	Immunophenotyping as regard to codon 280 genotypes	129
22	Comparison between codon 280 variants according to	133
22	outcome.	126
23	Comparison between codon 399 variants according to outcome	136
24	Comparison between codon 194 variants according to	139
	outcome.	
25	Comparison between variants of the 3 codons according to	142
	liver toxicity.	

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a clonal disease of a lymphoblast and the most common malignancy of all childhood cancers (*Bolufer et al.*, 2006). The development of this hematologic malignancy was suggested to arise by a combination of genetic susceptibility and the environmental exposure early development in fetal life and infancy (*Sinnett et al.*, 2000).

The DNA repair system is important to correct induced by carcinogens damage antineoplastic agents and is critical for the maintenance of the integrity of genetic material and for the protection against mutations that may result in cancer. Genetic polymorphisms in this machinery may result interindividual variations in the efficiency of this repair and may be responsible, at least in part, for greater cell susceptibility to chromosome breaks induced by genotoxic agents that would be inadequately repaired, thus becoming subject to malignant transformation. These alterations may also lead to changes in the response of cancer cells to antineoplastic agents, influencing the activity of these drugs (Batar et al., 2008).

X-ray repair cross-complementing group1 (XRCC1) plays an important role in base excision and single-strand break repair, as a scaffold protein that brings together proteins of the DNA repair complex, and appears to be a candidate for cancer risk. However, studies on the association between polymorphisms in this protein and cancer have yielded conflicting results (*Huang et al.*, 2009).

Aim of the work

Aim of this study was to evaluate the effect of the polymorphisms of DNA repair gene (XRCC1) on risk of childhood acute lymphoblastic leukemia (ALL), and extended to detect its relation to the disease outcome.

Acute Lymphoblastic Leukaemia

Acute lymphoblastic leukemia (ALL) is clonal malignant disease of the bone marrow in which early lymphoid precursors proliferate and replace the normal hematopoietic cells of the marrow (*Pui et al., 2004*). The leukemic clone may exhibit features of either B-cell or T-cell commitment. The massive extra-medullary hematogenous spread categorizes the disease as an aggressive neoplasm but dramatic advances in its treatment over the past three decades have changed it from a universally fatal to an almost curable disease in 85% of cases (*Settin et al., 2007*).

Incidence and Epidemiology:

There has been a gradual increase in the incidence of ALL in the past 25 years (*Xie et al.*, 2003) and now it is considered the most common childhood malignancy representing nearly one third of all pediatric cancers, and about 80% of pediatric leukemias (*Ziegler et al.*, 2005).

Most childhood leukemias are diagnosed under the age of 8 years, with reports of peak incidences ranging from 2 years to 5 years, followed by falling rates during later childhood, adolescence and young adulthood. The incidence rates raise again, beginning in the sixth decade and reaching a peak in the elderly (*Pui*, 2001).

For unexplained reasons, the incidence of ALL is substantially higher for white children than for black children, with a nearly 3-fold higher incidence at 2 to 3 years for white children compared to black children (*Smith et al, 2006*). ALL occurs slightly more frequently in boys than in girls. This difference is most pronounced for T-cell ALL (*Noriko et al., 2006*).

Pathophysiology:

There are two general mechanisms of leukemia The first involves activation of Protooncogene or creation of a fusion gene with oncogenic properties in leukemias, including ALL, chromosomal translocations occur regularly. It is thought that most occur before translocations birth during fetal development (Greaves and Wiemels, 2003). These translocations may trigger oncogenes to "turn on", causing unregulated mitosis where cells divide too quickly and abnormally, resulting in leukemia. There is little indication that propensity for ALL is passed on from parents to children (Pui et al., 2004).

The second mechanism involves the loss or inactivation of gene where protein products suppress leukemia (tumor suppressor genes), Loss genes leads to cells progressing through of these the proliferation cycle without the necessary brakes responsible for either repair or apoptosis of damaged DNA (Pui et al., 2004). About 50 tumor suppressor genes have been described e.g retinoblastoma and p53 gene (Macgregor, 2005). P53 tumor suppressor gene, one of the most frequently mutated genes in human