

Ain Shams University
Faculty of women for Arts, Science and Education
Biochemistry and Nutrition Department

# Effect of barley and malted barley on hypercholesterolemic rats

#### Thesis

Submitted to faculty of women, for Arts, Science and Education in partial fulfillment for M.Sc in Science Biochemistry and Nutrition

#### Ву

## Madiha Abd-El Azeem Hafney

(B.Sc in Science, 2010)

Biochemistry and Nutrition Department Faculty of women for Arts, Science and Education -Ain Shams University

## Under Supervisors of

#### Prof. Dr. Fatma Abd El-Hamid Khalil

Professor of Nutrition and head of Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education - Ain Shams University

#### Dr. Sahar Moussa Galal

Lecturer of Biochemistry and Nutrition, in Biochemistry and Nutrition

Department

Faculty of Women for Arts, Science and Education - Ain shams University



سورة البقرة الآية: ٣٢

## **Acknowledgement**

First, I thank **ALLAH** for his great mercy, generous blesses and for allowing me to achieve this work.

I would like to thank my advisor, **Dr. Fatma Abd-El Hamid Khalil,** professor of Nutrition and head of Biochemistry and Nutrition Department, Women's college, Ain Shams University for her invaluable guidance, inspiration, patience and support throughout this study. I admire her unflagging dedication to her students and her extraordinary talents in teaching and advising. I am very fortunate to have been under her mentorship and will always be tremendously grateful for everything I have learned from her.

I am greatly thankful to **Dr. Sahar Moussa Galal**, Lecturer of Biochemistry and Nutrition, in Biochemistry and Nutrition Department, Women's college, Ain Shams University for her all the support and encouragement.

## Acknowledgement

First, I thank **ALLAH** for his great mercy, generous blesses and for allowing me to achieve this work.

I would like to thank my advisor, **Dr. Fatma Abd-El Hamid Khalil,** professor of Nutrition in Biochemistry and Nutrition Department, Women's college, Ain Shams University for her invaluable guidance, inspiration, patience and support throughout this study. I admire her unflagging dedication to her students and her extraordinary talents in teaching and advising. I am very fortunate to have been under her mentorship and will always be tremendously grateful for everything I have learned from her.

I am greatly thankful to **Dr. Sahar Moussa Galal,** Lecture of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Women's college, Ain Shams University for her all the support and encouragement.

#### **Abstract**

The present study was carried out to investigate the efficiency of barley or malted barley in ameliorating lipid profile and oxidative alteration caused by high fat, high cholesterol diet (HFHC). Adult male albino rats were divided into six groups; each group consisted of 12 rats. Group (1) Served as control, fed on balanced diet (without treatment); groups (2) and (3), rats were fed on balanced diet containing 10 % barley and malted barley respectively, group (4), rats were fed on HFHC (50 g solid fat +10 g cholesterol/kg diet) to induce hypercholesterolemia. Groups (5) and (6), rats were fed on HFHC plus 10% barley and malted barley, respectively. The results of chemical analysis of barley revealed that each 100 ml of barley and malted barley solutions contain  $120 \pm 4.00$  mg,  $158 \pm 4.00$ mg as gallic acid equivalent (GAE) for total phenols respectively, 524  $\pm$  3.00 mg, 558  $\pm$  3.00 mg for total antioxidants capacity and each 100 gm of barley and malted barley contain 320  $\pm 1.5$  mg, 382  $\pm 3.24$ mg for total fiber respectively. The biological trial showed that the oral supplementation of barley and malted barley caused no significant change in the mean value of feed intake, meanwhile, body weight changes and feed efficiency ratio showed a significant decrease when compared with HFHC group. Moreover, the relative weights of liver, spleen, kidney and heart showed no significant change when compared with HFHC group. Also ,The results of HFHC group treated with barley reflected a significant depletion in all parameters of lipids profile and the percentage of change reached 22.04 % 24.87%, 25.19 %, 40.34 %, 34.11 %, 54.37 %, 54.89 % for total lipid (TL), total cholesterol (TC), triacylglycerols (TAG), low density lipoproteins cholesterol (LDL-C), very low density lipoproteins cholesterol (VLDL-C), atherogenic index (AI) and risk factor ratio (RF) respectively when compared with HFHC with an exception of high density lipoprotein cholesterol (HDL-C) showed a significant increase when compared with HFHC group. On the other hand, the results showed a significant increment in reduced glutathione level (GSH) in blood and liver. The percentage of changes in GSH in liver showed 13.82 % and 21.47 % as well as, super oxide dismutase (SOD) activity by 33.05 % and 42.39 %. While a significant decrement in malondialdehyde (MDA) in serum and liver, the percentage of decrement in liver by 38.47% and 46.36% in groups fed on HFHC diet and treated with barley or malted barley, respectively when compared with group fed on HFHC (p<0.05). It can be concluded that barley or malted barley

can reduce lipids profile and oxidative stress but malted barley is more effective than barley.

## **List of Contents**

| Titl      | e Subject                                   | Page |
|-----------|---------------------------------------------|------|
| Intr      | oduction                                    | 1    |
| Aim       | of the work                                 | 4    |
| Rev       | iew of literature                           | 5    |
| 1.        | Hyperlipidemia                              | 5    |
| 1.1       | Risk factors for hyperlipidemia             | 5    |
| 1.2       | Signs and symptoms of hyperlipidemia        | 6    |
| 1.3       | Classification of Hyperlipidemia            | 7    |
| 2.        | Hypercholesterolemia                        | 9    |
| 2.1.      | Lipoprotein Pathways                        | 11   |
| 2.2.      | Risk factors for hypercholesterolemia       | 14   |
| 2.3.      | Hypercholesterolemia and Oxidative Stress   | 15   |
| 2.4.      | Hypercholesterolemia and inflammation       | 18   |
| 2.5.      | Complications of Hypercholesterolemia       | 20   |
| 2.6.      | Management of hypercholesterolemia          | 24   |
| 3. B      | arley (Hordeum Vulgare l.)                  | 27   |
| 3.1.      | Types of barley grain                       | 28   |
| 3.2.      | Description of barley                       | 29   |
| 3.3.      | Nutritional value of barley grain           | 30   |
|           | 3.3.1 Arabinoxylans and beta-glucan content | 30   |
|           | 3.3.2. Antioxidants content                 | 31   |
|           | 3.3.3. Protein content                      | 32   |
| 4.        | Prebiotic and Probiotic                     | 34   |
| <b>5.</b> | Malting of Barley Grain                     | 37   |
| 5.1.      | Chemical composition and physiological      |      |
|           | characteristics of germinated barley (GBF)  | 39   |
| 6.        | Health Benefits of barley and malted barley | 41   |
| 6.1.      | Barley and atherosclerosis                  | 41   |

| 6.2.      | Barley and constipation                               | 46 |
|-----------|-------------------------------------------------------|----|
| 6.3.      | Barley and inflammatory bowel disease                 | 47 |
| 6.4.      | Barley and colon cancer                               | 49 |
| 6.5.      | Barley and diabetes                                   | 50 |
| 6.6.      | Barley and weight management                          | 52 |
| Mat       | erials and Methods                                    | 54 |
| 1-        | Materials                                             | 54 |
| 1.1.      | Chemicals                                             | 54 |
| 1.2.      | Animals                                               | 54 |
| 1.3.      | Experimental Diet                                     | 54 |
| 2-        | Methods                                               | 56 |
| 2.1.      | Preparation of malted barley                          | 56 |
| 2.2.      | Determination of bioactive compounds in               |    |
|           | Barley and malted barley                              | 57 |
|           | 2.2.1. Determination of total phenols content         | 57 |
|           | 2.2.2. Determination of total antioxidants            |    |
|           | capacity                                              | 58 |
| <b>3.</b> | <b>Determination of total fiber content of barley</b> |    |
|           | and malted barley                                     | 59 |
| 4.        | Biological Evaluation                                 | 60 |
| 5-        | Biochemical measurements                              | 62 |
| 5.1.      | Lipids profile concentrations                         | 62 |
|           | 5.1.1. Determination of total lipids                  | 62 |
|           | 5.1.2. Determination of Total cholesterol (TC)        | 63 |
|           | 5.1.3. Determination of triacylglycerols (TAG)        | 65 |
|           | 5.1.4. Determination of HDL-Cholesterol               | 66 |
|           | 5.1.5. Determination of very low density              |    |
|           | lipoproteins (VLDL_C) and low density                 |    |
|           | lipoproteins (LDL_C)                                  | 68 |
|           | 5.1.6 Determination of atherogenic index (AI)         |    |

|      | and risk factor                                     | 68     |
|------|-----------------------------------------------------|--------|
| 5.2. | Blood measurements                                  | 68     |
|      | 5.2.1 Determination of reduced glutathione level    |        |
| 5.3. | Serum measurements                                  | 69     |
|      | 5.3.1 Determination of serum malondialdehyde        |        |
|      | (MDA)                                               | 70     |
| 5.4. | Liver measurements                                  | 71     |
|      | 5.4.1 Determination of reduced glutathione level    | 71     |
|      | 5.4.2 Determination of malondialdehyde (MDA)        |        |
|      | level                                               | 72     |
|      | 5.4.3. Determination of superoxide dismutase        |        |
|      | activity                                            | 74     |
| 5.5. | Liver function tests                                | 76     |
|      | 5.5.1. Determination of alanine amino transferase   |        |
|      | (ALT) activity                                      | 76     |
|      | 5.5.2. Determination of aspartate amino transferase |        |
|      | (AST) activity                                      | 77     |
| 6.   | Statistical analysis                                | 78     |
| Resu | ults and discussion                                 | 80     |
| 1-   | Total phenols and total antioxidants capacity of b  | arley  |
|      | and malted barley                                   | 80     |
| 2.   | Total fiber content of barley and malted barley     | 83     |
| 3-   | The effect of barley and malted barley on feed in   | ntake, |
|      | body weight change and feed efficiency ratio (FER)  | )84    |
| 4-   | The effect of barley and malted barley on the re    | lative |
|      | weight of liver, kidney, heart and spleen           | 89     |
| 5-   | The effect of barley and malted barley on serum     | lipids |
|      | profile                                             | 94     |

| 6-                                              | The effect of barley and malted barley on blood red  | uced  |
|-------------------------------------------------|------------------------------------------------------|-------|
|                                                 | glutathione (GSH) and serum malondialdehyde (M       | (DA)  |
|                                                 | levels                                               | 107   |
| 7-                                              | The effect of barley and malted barley on blood red  | uced  |
|                                                 | glutathione (GSH), serum malondialdehyde (M          | (DA)  |
|                                                 | levels and superoxide dismutase (SOD) activity       | 108   |
| 8- The effect of barley and malted barley on se |                                                      | nine  |
|                                                 | amino transferase (ALT) and aspartate amino transfer | erase |
|                                                 | (AST) activity                                       | 117   |
| <b>Summary</b> 122                              |                                                      |       |
| Coı                                             | nclusion and Recommendation                          | 125   |
| Ref                                             | ferences                                             | 126   |
| Ara                                             | abic summary                                         |       |

# **List of Abbreviations**

| Abbreviation | Full name                            |
|--------------|--------------------------------------|
| (APOE 4)     | Apolipoprotein E4                    |
| (A sample)   | Absorbance of sample                 |
| (A standard) | Absorbance of standard               |
| (AI)         | Atherogenic index                    |
| (ALT)        | Alanine amino transferase activity   |
| (AST)        | Aspartate amino transferase activity |
| (A-CRA)      | Advanced colorectal adenoma          |
| (AOM)        | Azoxymethane                         |
| (BBB)        | Blood-brain barrier                  |
| (BBG)        | Barley beta-glucan                   |
| (BB)         | Barley beverage                      |
| (BBF)        | Barley beverage fermented            |
| (BF)         | Barley flake                         |
| (BMI)        | Body mass index                      |
| (CVD)        | Cardiovascular diseases              |
| (CHD)        | Coronary heart disease               |
| (CE)         | Cholesterol ester                    |
| (CETP)       | Cholesterol ester transfere protein  |
| (CAD)        | Coronary Artery Disease              |
| (CYP7A1)     | Cholesterol 7-α hydroxylase          |
| (CRP)        | C-reactive protein                   |
| (DSS)        | Dextran sulfate sodium               |
| (DF)         | Dietary fiber                        |
| (DTNB)       | 5, 5dithiobis 2-nitrobenzoic acid    |
| (DPPH)       | 2, 2-diphenyl-1-Picrylhydrazyl       |
| (FFA)        | Free fatty acids                     |
| (FH)         | Familial hypercholesterolemia        |
| (FOS)        | Fructo-oligosaccharide               |
| (FBG)        | Fasting blood glucose                |

| (FER)    | Feed efficiency ratio                       |
|----------|---------------------------------------------|
| (FAS)    | Fatty acids synthase                        |
| (GBF)    | Germinated barley foodstuff                 |
| (Gln)    | Glutamine                                   |
| (GBF)    | Fraction of germinated barley               |
| (GBFY)   | Yogurt fermented with germinated barley     |
| (GIT)    | Gastrointestinal tract                      |
| (GST)    | Glutathione S- transferase                  |
| (GPx)    | Glutathione peroxidase                      |
| (GAE)    | Gallic acid equivalent                      |
| (HDL)    | High-density lipoprotein                    |
| (HTGL)   | Hepatic triacylglycerols lipase             |
| (HoFH)   | Homozygous Familial hypercholesterolemia    |
| (HeFH)   | Heterozygous familial hypercholesterolemia  |
| (HFD)    | High fat diet                               |
| (HMGCoA) | 3-Hidroxy 3-metylglutaryl coenzyme A        |
| (HMW)    | High molecular weight                       |
| (HCD)    | High-cholesterol diet                       |
| (HWE)    | Hot-water extract                           |
| (HBG)    | Hull-less barley beta-glucan                |
| (HbA1c)  | Glycosylated hemoglobin                     |
| (HFHC)   | High fat high cholesterol diet              |
| (HL)     | Hyper-lipidemic                             |
| (HLP)    | Hyper lipidemic treated with probiotic      |
| (IL-8)   | Interleukin-8                               |
| (IL-6)   | Interleukin-6                               |
| (INS)    | Insulin                                     |
| (LDL)    | Low density lipoprotein                     |
| (LPL)    | Lipoprotein lipase                          |
| (LRP)    | LDL receptor-related protein                |
| (LCAT)   | Lecithin cholesterol acyltransferase (LCAT) |
| (LDL-R)  | LDL receptor                                |

| (LP(a))               | Lipoprotein (a)                |
|-----------------------|--------------------------------|
| (LMW)                 | Low molecular weight           |
| (Lr263)               | Lactobacillus reuteri 263      |
| (MCP-1)               | Monocyte chemotactic protein-1 |
| (MI)                  | Myocardial Infarction          |
| (MDA)                 | Malondialdehyde                |
| (NO)                  | Nitric oxide                   |
| (ND)                  | Normal diet                    |
| (N)                   | Standard                       |
| (NaHCO <sub>3</sub> ) | Sodium bicarbonate             |
| (oxLDL)               | Oxidized LDL                   |
| (OM)                  | Oat meal                       |
| (PCO)                 | Protein carbonyl               |
| (PON1)                | Paraoxonase1                   |
| (sdLDL)               | Small dense LDL                |
| (SRB1)                | Scavanger receptor B1          |
| (SNR)                 | Soluble nitrogen ratio         |
| (SCFA)                | Short chain fatty acids        |
| (SOD)                 | Superoxide dismutase           |
|                       |                                |

(TNF-α) Tumour necrosis factor-alpha

(TL) Total lipids

(TCA) Tricholoroacetic acid

(TAG) Triacylglycerols(TL) Total phenols(UC) Ulcerative colitis

(VLDL) Very low density lipoprotein

(VAS) Visual analogue scale

(WR)(WB)White riceWhite bread

(4-HNE) 4-hydroxynonenal

## **List of Figures**

|      | Dist of Figures                                                       |      |
|------|-----------------------------------------------------------------------|------|
| Fig. | Title                                                                 | Page |
| 1    | Major normal lipoprotein metabolic pathway                            | 13   |
| 2    | Progression of atherosclerosis.                                       | 22   |
| 3    | Schematic representation of the malting                               | 39   |
|      | process.                                                              |      |
| 4    | Schema of the production of germinated                                | 40   |
|      | barley foodstuff (GBF) and the chemical                               |      |
|      | composition of GBF.                                                   |      |
| 5    | Total phenols and total antioxidants capacity                         | 81   |
|      | content in barley.                                                    |      |
| 6    | Total phenols and total antioxidants content                          | 81   |
|      | in malted barley                                                      |      |
| 7    | Feed intake in control and high fat high                              | 86   |
|      | cholesterol rats supplemented with barley                             |      |
| 0    | and malted barley                                                     | 0.6  |
| 8    | Body weight change in control and high fat                            | 86   |
|      | high cholesterol rats supplemented with                               |      |
| 9    | barley and malted barley.  Feed efficiency ratio (FER) in control and | 87   |
| 9    | high fat high cholesterol rats supplemented                           | 07   |
|      | with barley and malted barley.                                        |      |
| 10   | Relative weight of liver in control and high                          | 91   |
| 10   | fat high cholesterol rats supplemented with                           | 71   |
|      | barley and malted barley                                              |      |
| 11   | Relative weight of heart in control and high                          | 91   |
|      | fat high cholesterol rats supplemented with                           |      |
|      | barley and malted barley.                                             |      |
| 12   | Relative weight of spleen in control and high                         | 92   |
|      | fat high cholesterol rats supplemented with                           |      |
|      | barley and malted barley.                                             |      |
|      |                                                                       |      |
|      |                                                                       |      |
| 13   | Relative weight of kidney in control and high                         | 92   |

| Fig. | Title                                                                                 | Page |
|------|---------------------------------------------------------------------------------------|------|
|      | fat high cholesterol rats supplemented with                                           |      |
|      | barley and malted barley.                                                             |      |
| 14   | Serum total lipids (TL) in control and high                                           | 98   |
|      | fat high cholesterol rats supplemented with                                           |      |
|      | barley and malted barley.                                                             |      |
| 15   | Serum total cholesterol (TC) in control and                                           | 98   |
|      | high fat high cholesterol rats supplemented                                           |      |
|      | with barley and malted barley.                                                        |      |
| 16   | Serum triacylglycerols(TAG) in control and                                            | 99   |
|      | high fat high cholesterol rats supplemented                                           |      |
| 1.77 | with barley and malted barley.                                                        | 00   |
| 17   | Serum high density lipoproteins (HDL-C) in                                            | 99   |
|      | control and high fat high cholesterol rats                                            |      |
| 18   | supplemented with barley and malted barley Serum high density lipoproteins (LDL-C) in | 100  |
| 10   | control and high fat high cholesterol rats                                            | 100  |
|      | supplemented with barley and malted barley.                                           |      |
| 19   | Serum very low density lipoprotein (VLDL-                                             | 100  |
| 17   | C) in control and high fat high cholesterol                                           | 100  |
|      | rats supplemented with barley and malted                                              |      |
|      | barley.                                                                               |      |
| 20   | Atherogenic index (AI) in control and high                                            | 101  |
|      | fat high cholesterol rats supplemented with                                           |      |
|      | barley and malted barley.                                                             |      |
| 21   | Risk factor ratio in control and high fat high                                        | 101  |
|      | cholesterol rats supplemented with barley                                             |      |
|      | and malted barley.                                                                    |      |
| 22   | Blood reduced glutathione level (GSH) in                                              | 111  |
|      | control and high fat high cholesterol rats                                            |      |
| 22   | supplemented with barley and malted barley                                            | 111  |
| 23   | Serum malondialdehyde level (MDA) level                                               | 111  |
|      | in control and high fat high cholesterol                                              |      |
| 24   | supplemented with barley and malted barley  Padvaged glutathians level (GSH) in liver | 112  |
| 24   | Reduced glutathione level (GSH) in liver                                              | 112  |