

Computer Systems Department Faculty of Computer and Information Sciences Ain Shams University

High Performance Techniques For Multi-Class 3D Object Categorization

Dissertation

Submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences.

By

Ahmed Hamdy Mohamed Eleliemy
B.Sc. in Computer and Information Sciences
Demonstrator at Computer Systems Department
Faculty of Computer and Information Sciences
Ain Shams University

Supervisors

- 1. Prof. Dr. H. Faheem Head of Computer Systems department at Faculty of Computer and Information Sciences, Ain Shams University
- 2. Prof. Dr. W. Elkelani Computer Systems department at Faculty of Computer and Information Sciences, Ain Shams University

Dedication

This thesis is dedicated to the memory of my parents. I really miss you, but I know you are happy and proud of this progress in my life.

I always pray for your happiness.

Many thanks To

My brother Mohamed, my sister Aisha and my lovely wife Omnia. Mohamed keeps pushing me, his words of encouragement ring in my ears. He was my first teacher, without his experience I could not find the right path.

Aisha supports from my early childhood till today. I will never forget your long hours of careing us.

My beautiful and lovely wife, without your support and patience, I could not complete such work.

Also I dedicate this work to the best Prof. I met; Dr. Hossam whom gives me his support and never gives up. He treats me as a son.

Acknowledgements

Many people helped in this work, but special thanks for Dr. Doaa Hegazy. She guides me to the correct way. Her wide knowledge and experience in the field of computer vision enriches my research. I would like to thank Dr. Wail Elkelani for his encouragement and guideness. Also, I would never forget the unlimited support of my Faculty; Computer and Information Sciences (FCIS). It facilitates my research and supports me with the needed equipment. Finally, I would like to appreciates Dr. Mohamed Hamdy; The manager of Information Network for Ain Shams University. He gave me his support and allowed me to access some of the network servers for my experiments.

Abstract

This thesis is an example of how high performance computing techniques can be used to speedup the processing of computationally intensive problems. The problem of machine ability to catgeorize different objects is our selected problem. Object categorization is the task of classifing objects into generic classes. Although such task is effort-less for humans, it is a complex and computationally intensive for computers. Object categorization is an important task for its different applications such as image annotation, image retrieval, video annotation, surveillance, driver assistance, autonomous robots, interactive games. It is also used as apreparation step for object recognition.

The performance metric for the categorization task consists of two key measurements, success categorization rate and system run-time. Different trials to solve the categorization problem are currently in place. However, few trials consider both of them. In fact, the heavy processing tasks needed for accurate categorization system lead to increase system run-time. Recently, the high performance techniques are used to solve the problem of increasing system run-time

In this thesis, we provide a study of 3D object categorization algorithms based on complex feature and a study of different high performance computing techniques that could be used to enhance such

algorithms performance. We introduce a system that categorizes 3D objects based on their depth information. It matches the real time constraint with high success categorization rate compared to other existing systems.

In the proposed categorization system, spin-images are selected as features also Support Vector Machine is selected as a classifier. Spin-image is a complex feature to be extracted. We investigated the task dependancy in such feature extraction. Moreover, we modified the original spin-image algorithm to eliminate the unnecessary blocking tasks based on our task dependancy analysis.

Different strategies enhancing spin-point selection in order to enhance sucess categorization rate are evaluated. Also, we evaluated the benift of using bag of features technique for the success categorization rate. During our initial experiments, the success categorization rate was approached 65%. After futher improvements, this rate has been significantly increased such that we have achieved almost 81% in 0.85033 second for each single object.

Eventually, an evaluation to our implemented categorization system is carried out in comparison to two different types of publicly available 3D objects datasets. The first one was the Princeton shape benchmark. The second one was the RGB-D dataset. Results have proved that our categorization system provides much more accurate and faster categorization.

Contents

1	Intr	roduction	3
	1.1	Overview	3
	1.2	Problem Statement	5
	1.3	Motivation	6
	1.4	Research Goals	7
	1.5	Contributions	7
	1.6	Thesis Outline	8
	1.7	Summary	9
2	Bac	kground 1	11
	2.1	Spin-images	11
	2.2		16
			16
		2.2.2 Support-angle parameter	16
			18
	2.3	Support Vector Machine	19
		2.3.1 Support Vector Machine kernel functions	21
	2.4	High Performance Computing Development Strategies	21
		2.4.1 PC clusters	22
		2.4.2 Symmetric Multi-Processing	24
		2.4.3 Graphical Processing Units	27
	2.5	Summary	28

viii CONTENTS

3	Sta	te of The Art	29
		3.0.1 Object Recognition and Categorization	29
	3.1	Object Categorization as A Pattern Recognition Problem	30
		3.1.1 Template Matching Model for Pattern Recognition	31
		3.1.2 Statistical model for pattern recognition	31
		3.1.3 Syntactic model for pattern recognition	32
		3.1.4 Knowledge-based model for pattern recognition	32
	3.2	Structure of Object Categorization Systems	33
		3.2.1 2D and 3D Vision	34
		3.2.2 Features Selection and Extraction	35
	3.3	The Related Research for Spin-images	36
	3.4	Summary	38
4	Pro	posed Categorization System	39
	4.1	Proposed Sequential System	41
	4.2	Random Selection Strategy	45
	4.3	Dependancy Analysis	45
	4.4	Proposed Parallel Categorization System	48
	4.5	Categorization System Enhancements	51
		4.5.1 Curvature Selection Strategy	56
		4.5.2 Bag of Features	56
		4.5.3 Convolution Edge Detection Selection Strategy	57
	4.6	Summary	59
5	Cas	e studies and Results	61
	5.1	Datasets	61
		5.1.1 Princeton Shape Benchmark Dataset	62
		5.1.2 RGB-D Dataset	63
	5.2	Platforms Specifications	64
		5.2.1 PC Cluster Specifications	65
		5.2.2 SMP Server Specifications	65
	5.3	Results	66

CC	ONTE	ENTS	ix
	5.4	5.3.1 Results for MPI Based System	70
6	6.1	Conclusions and Future Work Conclusions	75 75 76

x CONTENTS

List of Figures

2.1	Oriented Point P with normal N_p belongs to bunny 3D	
	mesh	12
2.2	The analogy of Spin-image generation process	13
2.3	α and β values between oriented point P and X	14
2.4	Bilinar Interpolation for increment value of i and j indices	15
2.5	The effect of changing image-width parameter	17
2.6	The effect of changing support-angle parameter	17
2.7	The effect of changing bin-size parameter	18
2.8	How Kernel trick transfers dimensions X1 and X2 to	
	new higher dimensions of $X1$ and $X2$ to make it possi-	
	ble to perform linear speration	20
2.9	PC Cluster	23
2.10	Symmetric Multi-processing Architecture	24
2.11	Single VS Multi threaded process	25
3.1	System structure for a categorization system based on	
	statistical approach	34
4.1	Sequential 3D object categorization system	41
4.2	Classifier judges list for different 4 categories W,X,Y	
	and Z	44
4.3	System runtime analysis	46

4.4	Sequence diagram for the tasks of the sequential cate-	
	gorization system	47
4.5	Mean of success categorization rate at different numbers	
	of spin-points	49
4.6	Parallel 3D object categorization system	50
4.7	The 3D connected mesh for chair object	52
4.8	3D point cloud of chair object	53
5.1	Some of PSB furniture objects	62
5.2	Some samples of RGB-D objects	63
5.3	Relation between system overall runtime and number	
	of spin-points	67
5.4	Relation between number of workers and overall system	
	run time	69
5.5	Confusion matrix of proposed model shows the mean of	
	success categorization rate equal to 65%	70
5.6	Relation between sucess categorization rate and num-	
	ber of spin-points for four the different categorization	
	techniques	72

List of Tables

5.1	Table of PSB furniture classes 62
5.2	Distribution of RGB-D classes into our 3 categories 64
5.3	Table of sequential and parallel parts of our approach . 68
5.4	Comparison between Random Selection Strategy (RSS),
	Curvature Selection Strategy (CSS) for both medoid
	and Mean Keyspinpoint and Edge Detection selection
	strategy (EDSS) with medoid Key spin-point —spin-
	image generation parameters: bin-size=0.1,image-width=20
	and support-angle=60, SVM parameters: RBF kernel
	function with $\sigma = 8$ and $C = 32$ for PSB and $\sigma = 512$
	and $C = 4$ for RGB-D , number of spin-points=100 71
5.5	System Runtime for RSS -as in [1]- technique, CSS with
	MCT, CSS with MDCT and EDSS with MDCT 73